
LLDPC: A Low-Density Parity-Check Coding Scheme for LoRa
Networks

Kang Yang
University of California, Merced

Merced, USA

Wan Du
University of California, Merced

Merced, USA

ABSTRACT

Low-density parity-check (LDPC) codes have been widely used

for Forward Error Correction (FEC) in wireless networks because

they can approach the capacity of wireless links with lightweight

encoding complexity. Although LoRa networks have been devel-

oped for many applications, they still adopt simple FEC codes, i.e.,

Hamming codes, which provide limited FEC capacity, causing un-

reliable data transmissions and high energy consumption of LoRa

nodes. To close this gap, this paper develops LLDPC, which realizes

LDPC coding in LoRa networks. Three challenges are addressed.

1) LoRa employs Chirp Spread Spectrum (CSS) modulation, which

only provides hard demodulation results without soft information.

However, LDPC requires the Log-Likelihood Ratio (LLR) of each

received bit for decoding. We develop an LLR extractor for LoRa

CSS. 2) Some erroneous bits may have high LLRs (i.e., wrongly

confident in their correctness), significantly affecting the LDPC de-

coding efficiency. We use symbol-level information to fine-tune the

LLRs of some bits to improve the LDPC decoding efficiency. 3) Soft

Belief Propagation (SBP) is typically used as the LDPC decoding

algorithm. It involves heavy iterative computation, resulting in a

long decoding latency, which prevents the gateway from sending

timely an acknowledgment. We take advantage of recent advances

in graph neural networks for fast belief propagation in LDPC de-

coding. Extensive simulations on a large-scale synthetic dataset

and in-filed experiments reveal that LLDPC can extend the lifetime

of the default LoRa by 86.7% and reduce the decoding latency of

the SBP algorithm by 58.09×.

CCS CONCEPTS

•Networks→Network protocol design; •Computingmethod-

ologies→ Neural networks.

KEYWORDS

Wireless Systems, Low-PowerWide-Area Networks, LoRa, Forward

Error Correction

ACM Reference Format:

Kang Yang and Wan Du. 2022. LLDPC: A Low-Density Parity-Check Coding

Scheme for LoRa Networks. In The 20th ACM Conference on Embedded

Networked Sensor Systems (SenSys ’22), November 6–9, 2022, Boston, MA, USA.

ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3560905.3568547

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SenSys ’22, November 6–9, 2022, Boston, MA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9886-2/22/11. . . $15.00
https://doi.org/10.1145/3560905.3568547

1 INTRODUCTION

As a promising Low-Power Wide-Area Network (LPWAN), Long

Range (LoRa) [1] has been used in many Internet of Things (IoT)

applications e.g., smart industry and precision agriculture [2]. LoRa

gateways collect data from end devices several miles away at low

data rates in unlicensed sub-GHz bands. Interference and ambient

noise along with long-distance wireless links degrade the signal-

to-noise ratio (SNR) of LoRa packets, causing erroneous bits in the

packets received at gateways [3].

Forward Error Correction (FEC) coding corrects bit errors by

adding some parity-check bits before each transmission. LoRa

adopts Hamming coding, which is simple to implement. However,

it is known to be significantly sub-optimal in error correction capac-

ity [3]. SemTech LoRa Design Guide also shows marginal coding

gain of Hamming codes under additive white Gaussian noise [4].

Various FEC codes, e.g., Reed-Solomon (RS) codes, Polar codes,

and LDPC codes, have been widely used in modern wireless net-

works [5, 6]. Polar codes require specific hardware circuits to encode

data on the sender side [7]. The encoding of RS codes consumes too

much energy on sensor nodes as it requires the arithmetic calcula-

tion in the Galois Field (GF), which is computation-expensive and

memory-intensive [8]. Therefore, they are not suitable for LoRa

networks. Compared to other codes, LDPC codes stand out for

their superior error correction capability, even approaching the

Shannon rate limit [9, 10]. It has been used in 5G New Radio traffic

channels [11], satellite communications [12], and the 802.11 WiFi

protocol family [13]. In addition, LDPC encoding involves only sim-

ple XOR operations, which can be done on sensor nodes without

consuming much energy.

In order to bridge the gap between the low FEC capacity of cur-

rent LoRa networks and the high coding gain provided by LDPC

coding, we design an effective LDPC coding scheme for LoRa net-

works, named LLDPC. We tackle the following three challenges.

Firstly, the LDPC coding gain depends heavily on its decod-

ing algorithm, i.e., Soft Belief Propagation (SBP), which takes the

Log-Likelihood Ratio (LLR) of each received bit as input. LLR is

a floating number that determines not only the bit value but also

the confidence of that value. However, the Chirp Spread Spectrum

(CSS) demodulation in LoRa specifications [14] does not provide

soft information about the output binary sequence. In LLDPC, we

develop a novel LLR extractor that uses the amplitude spectrum

of a symbol to calculate the LLR of each bit in the symbol where a

symbol contains a sequence of bits. The amplitude spectrum of a

symbol is obtained by CSS demodulation. Specifically, it calculates

the LLR of a bit by comparing the amplitudes of all frequency bins

in the amplitude spectrum where the bit is 1 or 0.

The second challenge is the low decoding efficiency caused by

the large LLR of some erroneous bits. Due to interference or ambient

noise, packets may have erroneous bits after demodulation. These

SenSys ’22, November 6–9, 2022, Boston, MA, USA Kang Yang and Wan Du

erroneous bits may have large LLRs, which will cause the SBP

algorithm to fail. To solve this problem, we try to decrease the

LLR of erroneous bits by utilizing symbol-level information. Our

key idea is that while we cannot identify the erroneous bits, it is

relatively easy to identify the erroneous symbols. The erroneous

symbol must contain erroneous bits. Once an erroneous symbol is

detected, we directly assign a low LLR to all its bits. By this way,

the LLR of the erroneous bit is greatly reduced, avoiding impacting

the LDPC coding gain. Toward this end, we need to answer two

questions further. 1) how to identify erroneous symbols? If a symbol is

demodulated incorrectly, its amplitude spectrum contains multiple

high-amplitude frequency bins. From the amplitude spectrum, we

extract a set of features that may characterize the correctness of

the demodulated symbols. We use these features to train a binary

Support Vector Machines (SVM) classifier [15]. 2) By lowering the

LLR of all bits in an identified erroneous symbol, we also reduce the

LLR of some correct bits. Does this side effect impact the performance

of LDPC coding? We find that it does not affect LDPC performance

through empirical experiments.

Thirdly, the gateway must reply with an acknowledgment (ACK)

to the LoRa nodewithin one or two seconds, according to LoRaWAN

(Long Range Wide Area Network) specifications [1]. However, the

SBP algorithm requires a large number of iterative updating oper-

ations, which leads to a long decoding latency. The parity-check

matrix of LDPC codes can be transformed into Tanner graphs, a

type of factor graphs. It provides us with the opportunity to perform

LDPC decoding with Graph Neural Networks (GNN). GNN models

can capture higher-order constraints between bit nodes and check

nodes on factor graphs, and parameterize the SBP algorithm [16].

We utilize GNN models to perform fast LDPC decoding on Tan-

ner graphs. We conducted experiments on a large-scale synthetic

dataset to determine the optimal number of layers of GNNs. The

binary cross-entropy loss is used to train GNN models end-to-end.

Finally, we incorporate the above LDPC coding scheme into data

rate adaptation process in LoRa networks. In LoRa, the data rate is

determined by Spreading Factor (SF). There are two ways to handle

a packet transmission failure, i.e., adding more FEC parity-check

bits (changing the Coding Rate) or lowering the data rate (chang-

ing SF). To transmit a packet, we must decide which FEC Coding

Rate (CR) to use for a given data rate. To do so, we first obtain an

SF-CR-SNR table by experiments offline. The table records the SNR

thresholds for different SFs and CRs. The SNR threshold for a spe-

cific combination of SF and CR is obtained from the corresponding

BER-SNR curve with a Bit Error Rate (BER) threshold of 1𝑒−4. We

jointly search for the smallest SF and CR in the SF-CR-SNR table to

transmit a packet based on the predicted channel SNR.

We implement LLDPC on Universal Software Radio Peripheral

(USRP) N210 combined with a back-end host. We evaluate LLDPC’s

performance on a large-scale synthetic dataset and an in-field

testbed. Compared with Hamming codes, experiment results show

that LLDPC can extend the node lifetime by up to 86.7%. Our GNN-

based BP algorithm reduces the average decoding latency of the

SBP algorithm by 58.09×.
In summary, this paper makes three major contributions:

• To the best of our knowledge, LLDPC is the first work to inte-

grate LDPC codes into LoRa networks. We release LLDPC’s

code on GitHub [17].

• LLDPC adopts a set of novel designs, i.e., an amplitude spectrum-

based LLR extractor, a symbol-aware LLR enhancement mod-

ule, and a GNN-based BP algorithm.

• Extensive in-field experiments and simulations based on a

large-scale synthetic dataset reveal that LLDPC significantly

outperforms the standard Hamming codes in LoRa.

2 BACKGROUND AND MOTIVATION

We first introduce the LoRa physical layer (PHY), followed by the

motivating experiments. Then, LDPC codes and LLR in the M-QAM

(M-ary Quadrature Amplitude Modulation) are presented.

2.1 LoRa PHY

The LoRa PHY of senders mainly performs encoding and modu-

lation. 1) Given a payload (e.g., sensing data), the LoRa PHY first

performs a set of encoding operations to improve the over-the-air

resilience, including FEC encoding, whitening, diagonal interleav-

ing, and gray mapping. Hamming codes are used as the default

FEC coding scheme in LoRa PHY [4]. LLDPC will replace Ham-

ming codes as a more effective FEC coding scheme in LoRa PHY. 2)

After the above operations, CSS modulates the encoded data into

multiple symbols. Each symbol contains a certain number of bits,

which is determined by the SF (i.e., 7, 8, 9, and 10). Thus, a symbol

can represent an integer in the range of 0 to 2𝑆𝐹 − 1. A symbol is

modulated by shifting the initial frequency of a base chirp by a step

of 𝐵𝑊 /2𝑆𝐹 , where 𝐵𝑊 is the channel bandwidth. A base chirp is a

sinusoidal signal whose frequency linearly increases from 0 Hz to

the channel bandwidth, e.g., 125 KHz [4].

At the receiver, LoRa implements demodulation and decoding.

Demodulation recognizes a symbol’s value by measuring its chirp’s

initial frequency. It multiplies the received signal by a down-chirp

whose frequency decreases linearly over time and performs FFT

(Fast Fourier Transform) on the resulting signal. Then, we can

obtain the amplitude spectrum of each received symbols. The index

of each frequency bin corresponds to a possible symbol value. The

value of a symbol is identified by the index of the frequency bin

with the highest amplitude. The bits of all the recognized symbols

in a packet are concatenated into a binary sequence that is further

processed by Gray demapping, deinterleaving, and dewhitening in

sequence. Finally, the original bits can be obtained by FEC decoding.

2.2 Motivating Experiments

We investigate the Packet Reception Ratio (PRR) and Bit Reception

Ratio (BRR) of LoRa links for two CRs of Hamming codes, i.e., 4/5

and 4/7. For CR of 4/5, every four bits are attached with a one parity-

check bit that can detect a one-bit error but cannot correct any error

in the five bits. For CR of 4/7, Hamming codes only can correct

one erroneous bit for every seven bits. A LoRa node periodically

sends packets to the gateway with SF10. The experiment lasts for

2.5 hours. We measure PRR and BRR every three minutes, and the

packet size is 32 bytes.

Figure 1 depicts the PRR and the BRR of LoRa links for two CRs.

The high BRR and low PRR reveal that the number of erroneous

bits in corrupted packets is small, even though many packets are

corrupted during transmissions. This phenomenon has also been

observed in [3]. Hamming codes cannot correct this small number

LLDPC: A Low-Density Parity-Check Coding Scheme for LoRa Networks SenSys ’22, November 6–9, 2022, Boston, MA, USA

0 10 20 30 40 50
Time slot

0

20

40

60

80

100

PR
R

&
 B

RR
 (%

)

PRR
BRR

(a) Coding rate: 4/5.

0 10 20 30 40 50
Time slot

0

20

40

60

80

100

PR
R

&
 B

RR
 (%

)

PRR
BRR

(b) Coding rate: 4/7.

Figure 1: The Packet ReceptionRatio (PRR) andBit Reception

Ratio (BRR) for different CRs of Hamming codes.

of erroneous bits, which inspires us to develop a new FEC coding

scheme for LoRa networks, e.g., LDPC codes.

2.3 Low-Density Parity-Check Codes

LDPC codes encode a data payload of 𝐾 bits into a packet of 𝑁 bits

by concatenating𝑀 parity-check bits to the 𝐾 payload bits, where

𝑀 = 𝑁 − 𝐾 and CR is 𝐾/𝑁 . A sparse parity-check matrixH𝑀×𝑁

can be generated randomly to obtain an (𝑁,𝐾) LDPC code [9]. The

H𝑀×𝑁 can be represented by the Tanner graph [18], as shown in

Figure 2. Nodes labeled with 𝑓𝑖 are check nodes, and nodes marked

with 𝑏 𝑗 are bit nodes. Each row in H represents a check node

constraint, i.e., the XOR sum of the participating bit nodes is zero. If

ℎ𝑖 𝑗 = 1, it indicates that the bit node 𝑏 𝑗 is involved in the constraint

of the check node 𝑓𝑖 . The matrixH is generated offline. To encode a

payload, the sender can easily generate the encoded data by simple

XOR operations with the matrix H. Hence, the LDPC encoding

process is computationally light and can be implemented on LoRa

nodes, e.g., Arduino Uno board [19] in our implementation.

LDPC Decoder. There are two LDPC decoding algorithms, i.e.,

Bit-flipping [20] and Soft Belief Propagation (SBP) [21]. Bit-flipping

is a hard-decision decoding algorithm that takes a binary bit stream

as input to decode the data. SBP is a soft-decision decoding algo-

rithm that considers the reliability of received bits by taking LLR as

input to form better estimates. Soft-decision decoding performance

is better than hard-decision decoding with an average SNR of 2.5

dB [22]. Therefore, this paper is focused on SBP. The SBP decoding

algorithm is summarized as follows [21].

• Step 0: The First Message from Bit Nodes to Check Nodes. When

a packet is received, the LLR of each bit can be obtained by

demodulation. To initialize the decoding process, each bit node

first sends its LLR to its connected check nodes.

• Step 1: Updating the Messages Sent from Check Nodes to Bit Nodes.

After a check node 𝑓𝑖 receives the messages from all its connected

bits nodes, it calculates the message that will send back to bit

node 𝑏 𝑗 as follows.

𝜂𝑓𝑖→𝑏 𝑗
= 2 tanh−1

����
∏

𝑏′𝑗 ∈𝑁 (𝑓𝑖) \ 𝑏 𝑗

tanh

(
𝜆𝑏′𝑗→𝑓𝑖

2

)�		
 (1)

where 𝑁 (𝑓𝑖) is the set of bit nodes connected to check node 𝑓𝑖

and 𝜆𝑏′𝑗→𝑓𝑖 = LLR
(
𝑏′𝑗

)
for the first iteration.

• Step 2: Updating the Messages Sent from Bit Nodes to Check Nodes.

After a bit node 𝑏 𝑗 receives the messages from all its connected

Figure 2: The upper part is an example of a parity-check

matrixH and its corresponding Tanner graph. Each row inH

is one check node (square), and each column denotes one bit

node (circle) in the right graph. The lower part is an example

of the calculated LLR of six bits.

check nodes, it prepares the message that will be sent back to

the check node 𝑓𝑖 .

𝜆𝑏 𝑗→𝑓𝑖 = LLR
(
𝑏 𝑗
)
+

∑
𝑓 ′𝑖 ∈𝑀 (𝑏 𝑗) \ 𝑓𝑖

𝜂𝑓𝑖′→𝑏 𝑗
(2)

where𝑀
(
𝑏 𝑗
)
is the set of check nodes connected to bit node 𝑏 𝑗 .

• Step 3: Verifying the Termination Condition. Before all bit nodes

send the updated messages to their connected check nodes, they

first verify whether the termination conditions are met. To do

so, every bit node 𝑏 𝑗 updates its LLR value 𝜆𝑏 𝑗
, according to the

messages 𝜂𝑓 ′𝑖 →𝑏 𝑗
received from all its connected check nodes.

𝜆𝑏 𝑗
= LLR

(
𝑏 𝑗
)
+

∑
𝑓 ′𝑖 ∈𝑀 (𝑏 𝑗)

𝜂𝑓 ′𝑖 →𝑏 𝑗
(3)

Let 𝑦𝑏 𝑗
denote the output of the SBP algorithm. The SBP slices

𝜆𝑏 𝑗
to determine the decoded output bit value, i.e., if 𝜆𝑏 𝑗

≥ 0, then

𝑦𝑏 𝑗
= 1; otherwise, 𝑦𝑏 𝑗

= 0. We can obtain the binary sequence

y = [𝑦𝑏0 , 𝑦𝑏1 , ... , 𝑦𝑏𝑁 −1
]. The SBP algorithm stops if y ·H𝑇 = 0

or if the maximum number of iterations is reached; otherwise,

the algorithm starts another iteration from Step 1.

2.4 LLR in M-QAM

LLR is required for the LDPC decoding. We can compute it by M-

QAM demodulation, which is widely adopted in modern wireless

networks, such as light communication, WiFi, and 5G [23–26]. It is

calculated as follows.

LLR
(
𝑏 𝑗
)
= log

F
(
𝑏 𝑗 = 1 | r

)
F
(
𝑏 𝑗 = 0 | r

) , where 0 ≤ 𝑗 < 𝑙𝑜𝑔2(𝑀) (4)

where r denotes a received symbol and 𝑏 𝑗 is the j-th bit in the

symbol r. When a symbol r is received, it is represented as a point in

the constellation diagram (I-Q plane) where the𝑀 standard symbols

have fixed positions. Next, the Euclidean distances between the

received symbol r and the𝑀 standard symbols in the constellation

diagram are computed. Finally, F
(
𝑏 𝑗 = 1 | r

)
is calculated as the

sum of the Euclidean distances between the received symbol r and

𝑀/2 standard symbols whose j-th bit is 1. Similarly, F
(
𝑏 𝑗 = 0 | r

)
is the sum of the Euclidean distances between symbol r and the

remaining𝑀/2 standard symbols whose j-th bit is 0.

SenSys ’22, November 6–9, 2022, Boston, MA, USA Kang Yang and Wan Du

Received LoRa PHY
samples at receiver

LLR

LLR
database

1 0 … 0 1

Decoded bitsStore Train

Offline training

Online inference

Spectrum-based
LLR extractor

De-chirping
& FFT

Symbol-aware
LLR enhancement

GNN-based belief
propagation

Enhanced LLR

Amplitude spectrum

Figure 3: The overall architecture of LLDPC.

According to Equation 4, LLR can be used to determine the value

of bits, i.e., if 𝐿𝐿𝑅(𝑏 𝑗) ≥ 0, then 𝑏 𝑗 = 1; otherwise 𝑏 𝑗 = 0. In

addition, LLR can also provide the confidence that bit 𝑏 𝑗 is 1 or 0.
If the absolute value of the LLR is high, then the confidence level

of the bit value is high.

Challenges of Realizing LDPC in LoRa. LoRa adopts CSS

modulation, which is different from M-QAM modulation. There are

no existing methods to calculate the LLR of the received bits during

CSS demodulation. Furthermore, SBP requires many iterations to

achieve effective error correction, resulting in long decoding la-

tencies (5.46 seconds in our implementation on a Raspberry Pi 3

single-board computer). However, according to LoRaWAN (Long

Range Wide Area Network) specification [1], the gateway must

reply with an ACK to the LoRa node within one second. Despite

some parallel implementations of LDPC decoding [27], they require

high-end hardware or quantum computing platforms, which cannot

be used in low-cost, large-scale LoRa networks.

3 DESIGN OF LLDPC

In this section, we introduce the design of LLDPC, including spectrum-

based LLR extractor, symbol-aware LLR enhancement module, and

GNN-based belief propagation algorithm.

3.1 Overview

Figure 3 shows the architecture of LLDPC. When a LoRa gateway

receives a signal from a sensor node, it first obtains the amplitude

spectrum of the received symbols through de-chirping and FFT

operations. Based on the spectrum results of each symbol, our LLR

extractor computes the LLRs of all bits in the symbol (Section 3.2).

To enable the best SBP decoding efficiency, we fine-tune the LLR of

all bits by leveraging symbol-level information (Section 3.3). Finally,

LLDPC passes the LLR sequence to the GNNmodel to perform LDPC

decoding (Section 3.4). The decoding latency is low (less than two

seconds), which allows the gateway to send back an ACK packet

to the sensor node within the time constraint (one or two seconds)

specified by the LoRaWAN standard.

The SVM model of the symbol-aware LLR enhancement module

and the GNN model are trained offline. We collect training data

from a large-scale synthetic dataset built through experiments on

the USRP N210 platform. In our experiments, since we record the

data payloads sent by the sensor nodes, we use them to label the

received packets at the gateway.

0 20 40 60 80 100 120
The index of bin

0.0

0.2

0.4

0.6

0.8

1.0

Th
e

no
rm

al
iz

ed
 a

m
p.

(a) Correctly demodulated symbol.

0 20 40 60 80 100 120
The index of bin

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Th
e

no
rm

al
iz

ed
 a

m
p.

(b) Incorrectly demodulated symbol.

Figure 4: The amplitude spectrum obtained from CSS demod-

ulation for two symbols at different SNRs.

3.2 Spectrum-based LLR Extractor

3.2.1 CSS Demodulation. After performing de-chirping and FFT,

we can obtain the amplitude spectrum of a received symbol [14].

The index of frequency bin with the highest amplitude will be

selected as that symbol’s value. This CSS demodulation process

can be treated as a classification task, which outputs probability of

all frequency bins. We perform the SoftMax operation [28] on the

amplitude spectrum to compute the probability of each bin.

P(𝑡 = bin𝑥) =
exp

(
𝐴bin𝑥

)∑
𝑦∈[0, 2𝑆𝐹 −1] exp

(
𝐴bin𝑦

) (5)

where 𝑡 is the modulated value of a transmitted symbol, exp is the

exponential function, and P(𝑡 = bin𝑥) denotes the probability that

the modulated value equals the index of the x-th frequency bin (i.e.,

𝑥). The 𝐴bin𝑥 is the amplitude of the x-th bin.

The frequency bin with the highest probability is selected as the

demodulation result. If the selected probability (i.e., amplitude) is

significantly higher than the others, we have higher confidence level

in the classification result, as shown in Figure 4(a) for the correctly

demodulated symbol. On the contrary, if the highest amplitude

in the amplitude spectrum is similar to the amplitude of other

frequency bins, it is hard to determine the value of that symbol,

as shown in Figure 4(b). However, LoRa CSS demodulation simply

selects the index of the frequency bin with the highest amplitude

as the symbol’s value, ignoring the confidence information.

3.2.2 LLR Calculation. Each symbol contains 𝑆𝐹 bits. Let 𝑆+
𝑏 𝑗

be

the set of symbols whose j-th bit is 1, and 𝑆−
𝑏 𝑗

be the set of symbols

whose j-th bit is 0 (0 ≤ 𝑗 < 𝑆𝐹). For example, if SF is 3, the 𝑆+
𝑏0

=
{4, 5, 6, 7} and 𝑆−

𝑏0
= {0, 1, 2, 3}. We compute the LLR of the j-th

LLDPC: A Low-Density Parity-Check Coding Scheme for LoRa Networks SenSys ’22, November 6–9, 2022, Boston, MA, USA

bit in a symbol as follows.

LLR
(
𝑏 𝑗
)
= log

∑
𝑡 ∈𝑆+

𝑏𝑗
P (𝑡 | 𝑟)∑

𝑡 ∈𝑆−
𝑏𝑗

P (𝑡 | 𝑟)
≈ log

max𝑡 ∈𝑆+
𝑏𝑗

P (𝑡 | 𝑟)

max𝑡 ∈𝑆−
𝑏𝑗

P (𝑡 | 𝑟)
(6)

where P (𝑡 | 𝑟) represents the probability that the value of the trans-
mitted symbol is 𝑡 given the received signal 𝑟 . It is calculated by

Equation 5 using the amplitude spectrum of the symbol. Hence,

Equation 6 defines that LLR
(
𝑏 𝑗
)
is the sum of the probabilities that

all symbols in set 𝑆+
𝑏 𝑗

agree on 𝑏 𝑗 = 1, divided by the sum of the

probabilities that all symbols in set 𝑆−
𝑏 𝑗

agree on 𝑏 𝑗 = 0.

We approximate the sum of the probabilities as the highest prob-

ability due to two reasons. When SF is large, e.g., SF10, each set (𝑆+
𝑏 𝑗

and 𝑆−
𝑏 𝑗
) contains 512 items. It takes time to calculate the probability

of each symbol and the sum of all probabilities in each set. Second,

the summation may be corrupted by a single outlier, while the

maximization operation is more robust. The approximation is also

widely used in the existing wireless networks [24]. We also conduct

experiments to compute the difference between the sum and max

operation. For each packet, we calculate the LLR using sum andmax,

respectively. Then we measure the absolute difference between the

LLR calculated by sum and max for the corresponding bits. The

average difference in LLR is only 0.13, implying a negligible effect

on the LLR calculation.

The LLR can also be used to determine the bit values. If the LLR of

a bit is positive, it is 1; if its LLR is negative, it is 0. The experiments

in Section 6 show that our LLR extractor can output exactly the

same binary sequence as LoRa CSS demodulation. Therefore, our

LLR extractor does not change the BER of the received packets. For

example, if the original bit is 1, but the CSS demodulation outputs 0,

our LLR extractor will report a negative LLR. Bit errors are caused

by interference or ambient noise during wireless transmissions.

They will be corrected by FEC codes.

3.3 Symbol-Aware LLR Enhancement

In this section, we first investigate whether the computed LLR of

erroneous bits impacts the efficiency of the SBP algorithm. Then,

we propose a symbol-aware LLR enhancement module to integrate

symbol-level information to fine-tune the LLR of some bits.

3.3.1 The Decoding Efficiency of SBP and the LLR of Erroneous Bits.

Figure 2 depicts a simple case where the LLRs of all bits are nor-

malized, and we assume that they all have the maximum absolute

values, i.e., 1.0. There are six transmitted bits. The parity-check ma-

trix and its corresponding Tanner graph are also shown in Figure

2. We assume the second bit (𝑏1) is corrupted, i.e., the second bit is

toggled from 1 to 0.

Next, we show how SBP tries to correct the second bit during

the decoding iteration. In the first iteration, once bit nodes transmit

their initial LLRs to their connected check nodes, SBP updates the

Figure 5: The CDF of LLR

for correct and erroneous b-

its w/o symbol-level info.

Figure 6: The post-decoding

BER by the SBP with original

LLRs and enhanced LLRs.

check node message with Equation 7.

𝜂𝑓0→𝑏1 = 2 tanh−1
���

∏
𝑏 𝑗 ∈[0, 2, 5]

tanh
[
0.5𝐿𝐿𝑅

(
𝑏 𝑗
)]�	
 = 0.198

𝜂𝑓1→𝑏1 = 2 tanh−1
���

∏
𝑏 𝑗 ∈[0, 3, 4, 5]

tanh
[
0.5𝐿𝐿𝑅

(
𝑏 𝑗
)]�	
 = −0.091

(7)

This equation is instanced from Equation 1. Both messages will be

transmitted to bit node 𝑏1. Based on these two messages and its

current LLR, bit node 𝑏1 will update its LLR to -0.893 using Equa-

tion 3. After this iteration, the LLR of the second bit reduces from

−1.0 to −0.893. We run 1,000 iterations. However, this value even-

tually converges to −0.77, meaning the second bit is still 0. Thus,

SBP cannot correct this erroneous bit even with a large number of

iterations because of its large absolute LLR value.

Based on this example, we know that the efficiency of the SBP is

affected by the large LLR of erroneous bits. We further investigate

the severity of the large absolute LLR values for erroneous bits. We

plot the CDF of the absolute LLR values for correct and erroneous

bits based on a synthetic dataset collected in Section 6. Figure 5

shows that the absolute LLR values of erroneous bits could be up

to 0.32. Such a large LLR valve will make SBP less efficient.

Simultaneously, the decoding efficiency of SBP is also investi-

gated when the initial LLR of the second bit is manually changed

from−1.0 to−0.1. SBP performs the same updating process. We find

that after two iterations, the LLR of the second bit is updated from

−0.1 to 0.007, enabling SBP to correct errors successfully. Thus, if

we can reduce the absolute LLR value of erroneous bits, we will

increase the error correction efficiency of SBP.

We perform a simulation experiment to verify the above observa-

tion further. The LLRs of all bits are randomly generated based on

their bit values, e.g., if a bit value is 1, its LLR is a positive float num-

ber. The erroneous bits are produced with specific pre-decoding

BER.We refer to the BER before the LDPC decoding as pre-decoding

BER and the BER after the LDPC decoding as post-decoding BER.

Figure 6 shows that if the absolute LLR value is comparable with

correct bits, SBP cannot correct erroneous bits, although the BER

is low (gray bar). However, if we modify the absolute LLR value

of the erroneous bits to a small float number, SBP can provide a

higher error correction capability (black bar).

However, it is challenging to identify erroneous bits. Fortunately,

we can explore some symbol-level information to identify erroneous

SenSys ’22, November 6–9, 2022, Boston, MA, USA Kang Yang and Wan Du

Figure 7: The representati-

on visualization with t-SNE

for our proposed symbol f-

eatures when SF=10.

Figure 8: The CDF of the ab-

solute value of LLRs for erro-

neous bits without and with

symbol-level information.

bits indirectly. If a bit is wrong, the symbol containing that bit

must be wrongly demodulated. If we can predict that a symbol

is demodulated incorrectly, we assign a low LLR to all bits in the

symbol. In this way, those erroneous bits will have a lower LLR,

which can significantly increase the decoding efficiency of SBP.

3.3.2 Erroneous Symbol Detection. We put forward some symbol

features to classify the correctness of symbols by SVM models.

Feature Extraction. To find some compelling features about

the correctness of the symbols, we examine the distribution of the

amplitude spectrum. Figure 4 shows that if a symbol is demodu-

lated incorrectly, the spectrum contains multiple high-amplitude

frequency bins compared to the highest-amplitude bin. We quan-

tify these high-amplitude bins by the amplitude ratio between the

highest amplitude and their amplitudes. Specifically, frequency bins

are sorted by their amplitudes. Then, we calculate the amplitude

ratios of the top-S high-amplitude bins compared to the highest-

amplitude bin. These ratios form a feature vector of length S. We

conducted experiments to set S as five empirically.

To understand the effectiveness of our proposed features, we

employ the t-distributed Stochastic Neighbor Embedding (t-SNE)

[29, 30] technique to visualize them. From Figure 7, we can find that

symbols exhibit a high clustering effect. Therefore, we can use our

proposed features to do binary symbol classification, i.e., predicting

whether the symbols are correctly demodulated or not.

Classifier. Toward this end, we use the SVM classifier [15] with

radial basis function (RBF) kernel to perform symbol classification.

In Section 6.5, experiments show that our SVM model can predict

the correctness of the symbols with a false negative ratio and a

false positive ratio of 4.2% and 0.3%.

3.3.3 The Calculation of the Enhanced LLR. After classifying the

correctness of symbols, we enhance the LLR of the bits belonging to

the symbols predicted to be incorrectly demodulated. We multiply

the probability of a symbol being correctly demodulated by the

original LLR of bits. This probability is obtained from the SVM

classifier. By this way, we can reduce the absolute LLR value of

erroneous bits. Figure 8 shows the CDF of absolute LLR before and

after the integration of symbol-level information. We can observe

that it does reduce the absolute LLR values of erroneous bits.

On the other hand, we also decrease the absolute LLR values of

some correct bits. Does it curb the performance of the SBP algo-

rithm? We conduct a similar simulation with Figure 6. The differ-

ence is that we not only reduce the absolute LLR value of erroneous

GNN layer

…

K layers

GNN layer

Feature extraction

LLRs of all bit nodes

Classifier layer

Figure 9: The architecture of the GNN-based BP algorithm.

bits but also randomly reduce the absolute LLR value of correct

bits. We find that those reduced LLRs of correct bits almost do not

harm the SBP decoding performance. The rationale is that lowering

LLR for correct bits at least does not negatively impact the SBP

updating. However, by assigning a small LLR to erroneous bits, the

significant impact of erroneous bits on SBP can be greatly reduced.

3.4 GNN-based Belief Propagation

The GNN-based model have been successfully applied to graph-

structured data to capture pairwise dependencies between variables

and to propagate information throughout the graph [16]. Further-

more, the GNN model is generalized to capture the higher-order

constraints between bit nodes and check nodes on factor graphs,

and to parameterize the SBP algorithm [16]. Inspired by the above

recent advances in GNN, we utilize the GNN model to perform fast

LDPC decoding on Tanner graphs.

Figure 9 shows the architecture of the GNN-based belief propa-

gation algorithm. The Tanner graph and enhanced LLRs of each bit

are passed to the feature extraction module. The module extracts

five matrices that serve as inputs to the GNN layers. These GNN

layers can learn high-order constraints among nodes and parame-

terize the SBP algorithm. Finally, we use a classifier layer to obtain

the final bit values.

Feature Extraction. This module generates node features and

edge features. The node feature contains two types of features,

i.e., the bit node feature and the check node feature. The initial

LLR of the bit nodes is used as the bit node feature. For the check

node feature, we concatenate the features of all bit nodes connected

to the check node as its feature. The edge feature is obtained by

concatenating the bit node feature and the check node feature if

there is an edge between the bit node and check node. At the same

time, we also generate two matrices, i.e., the bit node matrix and

the check node matrix. The bit node matrix indicates which check

nodes each bit node is connected to, and the check node matrix

specifies which bit nodes each check node is linked to. These two

matrices represent the structure of the Tanner graph.

GNN Layer. The GNN layer will update the bit node features

according to the node features, edge features, and graph structures.

ṽ𝑏 𝑗
=

∑
𝑝𝑖 ∈𝑀 (𝑏 𝑗)

Q
(
e𝑝𝑖→𝑏 𝑗

)
Q
(
f𝑝𝑖 , v𝑏 𝑗

)
(8)

where Q maps edge futures e𝑝𝑖→𝑏 𝑗
to a weight matrix, and Q maps

check node feature f𝑝𝑖 and bit node feature v𝑏 𝑗
to a feature vector.

Then an updated bit node feature ṽ𝑏 𝑗
can be generated through

matrix multiplication and summation operations.

In this GNN layer, we need to choose the number of GNN layers

K. We conduct experiments to empirically set the value of K. We

LLDPC: A Low-Density Parity-Check Coding Scheme for LoRa Networks SenSys ’22, November 6–9, 2022, Boston, MA, USA

randomly select 75% of the dataset to train GNN models with dif-

ferent GNN layers on a local PC offline. The remaining 25% of the

dataset is used to test the post-decoding BER of the GNN layer, and

we measure the decoding latency on a local PC and a single-board

computer of Raspberry Pi 3. Table 1 shows the effect of K on the

decoding performance. We can see that the choice of K signifi-

cantly impacts decoding latency but less on decoding accuracy. For

satisfactory performance and acceptable decoding latency, we set

the number of layers K as 8.

Classifier Layer. Finally, the updated bit node’s feature ṽ𝑏 𝑗
will

be passed to the classifier layer, which is used to determine the bit

value, i.e., 0 or 1.

4 MODEL TRAINING FOR LLDPC

We introduce the training details, including the hardware imple-

mentation of LoRa nodes and gateways, and the offline training of

LLDPC models. Two models in LLDPC are trained, i.e., the SVM

model for symbol-aware LLR enhancement module (Section 3.3)

and the GNN-based BP algorithm (Section 3.4). LLDPC is imple-

mented on a local computer with one CPU that has Intel(R) Core

(TM) i9-11900KF @ 3.50 GHz with 16 cores. A graphics process-

ing unit (GPU) card (NVIDIA GEFORCE RTX 3080 Ti) is used to

accelerate the training process of GNN modules.

Implementation. LoRa nodes are hand-crafted with SX1276

Radio [31] on the Arduino Uno host boards [19]. We use the USRP

N210 platform for capturing over-the-air LoRa signals, operating

on a UBX daughter board at the 904.3MHz bands. The sampling

rate is 1 MHz. The captured signal samples are then delivered to a

back-end host for demodulation [32, 33].

We cannot disable Hamming codes due to hardware limitations.

Alternatively, on the sender side, we encode a 32-byte payload data

into a 40-byte encoded data by LDPC encoding (CR is 4/5). The 40

bytes of data are then sent to the receiver by modulated symbols

after successive Hamming encoding, whitening, diagonal interleav-

ing, and gray mapping in the sender’s hardware. Regardless of the

CR of LDPC, the CR of Hamming codes is always set to 4/5. For CR

of 4/5, every four bits are concatenated with one parity-check bit.

For Hamming codes, the CR of 4/5 can detect one erroneous bit but

cannot correct any error in the five bits.

At the receiver side, we utilize the amplitude spectrum of the

demodulated symbols to calculate the LLR of bits, where bits con-

tain the encoded data from LDPC and Hamming codes. Then, we

perform Gray demapping, deinterleaving, and dewhitening in se-

quence on the calculated LLR. We drop one parity-check bit and

extract only the four data bits’ LLR for every five bits (Hamming

codes’ CR is 4/5). The impact of Hamming codes on LDPC decoding

performance is eliminated in this way. All these operations are

implemented in the public GitHub libraries [32, 33]. Thus, we can

get the LLR with 40 bytes of data bits encoded by LDPC codes. A

symbol-aware LLR enhancement module enhances these LLRs. We

run the GNN-based BP algorithm to perform LDPC decoding.

Training Data Collection. We collect the LoRa I/Q signals

with USRP N210 to generate training datasets. LoRa nodes transmit

random packets periodically at five locations in an office building.

The 12,000 packets are collected at high SNR (>20dB) with different

transmission settings, including 4 SFs (i.e., 7, 8, 9, 10) and 3 CRs (i.e.,

Table 1: The effect of the number of layers K on the post-

decoding BER and decoding latency with SNRs in the range

of [−30,−5] dB, where CR is 4/5 and SF is 7. The latency is

measured from two platforms, i.e., PC/Raspberry Pi 3.

of layers K 5 8 12

BER (%) 23.09 ± 21.83 23.06 ± 21.76 23.02 ± 21.05
Latency (s) 0.009/0.207 0.021/0.434 0.054/1.404

4/5, 4/6, 4/7). Based on the collected high SNR packets, we use data

augmentation to generate 3.6 million packets with SNR from -35

dB to -5 dB in 0.1 dB steps. To generate new LoRa packets with a

specific SNR, we add Gaussian white noises with corresponding

amplitudes on the collected I/Q samples. It is a widely used data

enhancement method [34, 35].

Training SVMmodel. To train the SVM model, we first extract

the feature vectors of symbols on the amplitude spectrum. By con-

ducting experiments, the length of the feature vector is set to 5. The

label of a symbol can be obtained by comparing the demodulated

value of the symbol with its actual value. The SVM models use

the Radial Basis Function (RBF) as the kernel. One parameter must

be determined for the RBF kernel, i.e., C. Parameter C trades off

the misclassification of training examples against the simplicity of

the decision surface. A low C makes the decision surface smooth,

while a high C aims at classifying all training examples correctly. C

is empirically set to 1.0. Additionally, considering the unbalanced

number of two classes, we set the field of classWeight="balanced"

to automatically adjust the sample weight inversely proportional

to the number of classes.

Training GNN model. The binary cross entropy loss L for the

GNN model is computed from the predicted LLR of all bit nodes

𝑝 (c) and ground truths c. The ground truths c are the transmitted

bits known by the LoRa receiver during the training stage. After

calculating the loss, we back-propagate the loss to the network to

update GNN modules.

Loss(Θ) = L (c, 𝑝 (c)) (9)

whereΘ denotes all the parameters of the GNN-based BP algorithm.

We train the GNN model using the enhanced LLRs and the labels

of each bit. We construct a GNN model consisting of eight GNN

layers. Each layer shares the same 𝑄1 and 𝑄2 functions, which are

a two-layer Multilayer Perceptron (MLP) network as follows MLP

(64) - MLP (4). The first layer comes with a ReLU activation function

and the second layer is with no activation function. The model is

implemented using PyTorch [36], trained with Adam optimizer [37]

with an initial learning rate of 0.01, and after every 10000 samples,

the learning rate is decreased by a factor of 0.98. The parameters of

the GNN model are uniformly initialized to [−0.1, 0.1]. The batch
size is set as 32.

5 INTEGRATION OF LLDPC INTO LORAWAN

In the above two sections, we have developed our LDPC decoding

scheme on the LoRa receiver side. In this section, we further propose

a data rate adaptation mechanism to jointly set SFs and CRs of LoRa

senders by considering the LLDPC-based error correction system.

SenSys ’22, November 6–9, 2022, Boston, MA, USA Kang Yang and Wan Du

LoRaWAN specifications [1] use the Adaptive Data Rate (ADR)

algorithm to select SF for each sender node. It first estimates the

SNR of a link by averaging the SNRs of the recent multiple received

packets. It then chooses the highest data rate whose SNR threshold

is lower than the estimated SNR.

The candidates for CRs could be 4/5, 4/6, and 4/7. In LLDPC, the

LDPC codes with different CRs for one SF also can provide different

SNR thresholds, as shown in Table 2. Hence, we have to set SFs and

CRs jointly. We determine the SNR threshold when BER is 1𝑒−4

since this BER can achieve a 99.68% of packet delivery rate when

the packet size is 40 bytes.

When a packet is received from a LoRa node, the gateway pre-

dicts the SNR for the subsequent transmission by weighting the

average of the three most recently received packets. Based on the

predicted SNR, we query Table 2 to obtain the candidate of SFs and

CRs whose SNR threshold is lower than the predicted SNR. The

final SF and CR are chosen with the shortest transmission time,

which is calculated by the LoRa standard [4]. The updated SF and

CR will then be sent back to the LoRa node. The LoRa node will use

the most recently received SF and CR to transmit the next packet.

Disabling LDPC Codes. The CR of 4/4 is also included in

Table 2. Adopting LDPC codes always carries overhead from parity-

check bits. Thus, we should consider the CR of 4/4. If CR is 4/4,

LDPC codes will not be used. For example, if the predicted SNR is

greater than -7.5 dB, we can use SF7 and a CR of 4/4 because the

predicted SNR is larger than the SNR threshold of SF7 and CR of 4/4,

which has the shortest transmission time among all the available

settings. In this case, LDPC codes are not required.

6 EVALUATION

We conduct extensive experiments to evaluate LLDPC on large-scale

synthetic datasets and in-field experiments.

Evaluation on Synthetic Datasets. The synthetic dataset al-

lows us to manipulate SNRs in a fine-grained manner. It enables

us to evaluate the performance of LLDPC under comprehensive

settings, including all available SFs, CRs, and SNRs. Additionally, it

powers us to have enough data to train GNN models. Section 6.2

first presents the overall performance of LLDPC on the large-scale

synthetic dataset, followed by the performance of LLDPC under dif-

ferent experiment settings in Sections 6.3 and 6.4. We also evaluate

the effectiveness of our proposed components in Section 6.5.

In-Field Experiments. Since the synthetic dataset contains

only artifact Gaussian white noises in the indoor environment,

we further test LLDPC in the campus environment. Therefore, in-

field experiments are used to assess the performance of LLDPC

when additive white Gaussian noise and other types of noise (such

as multipath interference) are present. Section 6.6.1 evaluates the

performance of LLDPC at each location in in-field experiments. So

far, we have evaluated the performance of LLDPC under different

SFs and CRs separately. Next, wewill test the performance of LLDPC

by integrating it into LoRaWAN. In section 6.6.2, our system selects

SFs and CRs to accommodate link quality. Finally, we measure the

overhead of LLDPC in Section 6.7.

Table 2: The SNR threshold (dB) under different SFs and CRs

for LLDPC, where the SNR threshold with CR of 4/4 is ob-

tained from LoRa standards [4].

SF CR SNR threshold SF CR SNR threshold

7 4/4 -7.5 9 4/4 -12.5

7 4/5 -8.7 9 4/5 -14.3

7 4/6 -9.4 9 4/6 -15.8

7 4/7 -10.6 9 4/7 -16.5

8 4/4 -10.0 10 4/4 -15.0

8 4/5 -11.2 10 4/5 -16.8

8 4/6 -12.7 10 4/6 -18.3

8 4/7 -14.0 10 4/7 -19.5

6.1 Experimental Setup

6.1.1 Performance Criteria. We adopt the following two metrics

to evaluate the performance of LLDPC.

Bit Error Ratio (BER). It is the number of erroneous bits divided

by the total number of bits in a packet. We compute the BER once

for each transmitted packet.

Lifetime. The lifetime of a node is the duration from the first

startup to the exhaustion of its battery energy. This metric mea-

sures the energy efficiency of LLDPC. It is calculated using Lo-

RaWAN battery models [38–40]. Specifically, the consumed energy

consists of two parts, i.e., the energy consumed from the microcon-

troller (MCU) and the Radio during the encoding and transmission

processes. During the encoding process, only the MCU is busy. In

the transmission state, both the MCU and the Radio are active. The

power consumption of MCU and Radio in two states is provided

in [38]. We need to compute the encoding and transmission time.

We assume that there is an ideal Hybrid Automatic Repeat Request

(HARQ) mechanism, which retransmits extra bits to correct erro-

neous bits obtained after FEC decoding. The extra transmitted bits’

length equals twice the number of erroneous bits. LLDPC provides

a lower post-decoding BER, so our system can achieve more robust

communication with much shorter re-transmitted bits. LoRa nodes

are powered by two AA batteries whose capacity is 3, 000 mAh and

send 32-byte payload once per 10 minutes. Note that we do not con-

sider the energy consumption of waiting for the ACK. According

to the LoRaWAN specification, LoRa nodes must receive an ACK in

the first or second receiving window before transmitting the next

packet. They will be opened at a delay of one and two seconds after

the end of the uplink. Therefore, whether it is LLDPC or Hamming

codes, the MCU of LoRa nodes needs to wait the same amount of

time with the same power. They will consume the same energy to

wait for the ACK.

6.1.2 Benchmarks. We compare the performance of LLDPC with

the following two baselines.

Hamming [1]. Hamming codes are the standard FEC codes for

LoRa. LoRa uses 𝑘/𝑛 Hamming codes with 𝑘 = 4 and 𝑛 ∈ {5, 6, 7, 8},
where 𝑘 denotes the data word length and 𝑛 is the codeword length.

Hamming codes have a limited ability to detect and correct erro-

neous bits [3]. The 4/5 and 4/6 CRs can only detect errors, while

the 4/7 and 4/8 CRs can correct one erroneous bit per 𝑛 bits.

LLDPC: A Low-Density Parity-Check Coding Scheme for LoRa Networks SenSys ’22, November 6–9, 2022, Boston, MA, USA

(a) BER vs. SNR when SF = 7. (b) BER vs. SNR when SF = 8. (c) BER vs. SNR when SF = 9. (d) BER vs. SNR when SF = 10.

Figure 10: The bit error ratio curves of three decoding methods for different SFs (coding rate: 4/6).

(a) Lifetime vs. SNR when SF = 7. (b) Lifetime vs. SNR when SF = 8. (c) Lifetime vs. SNR when SF = 9. (d) Lifetime vs. SNR when SF = 10.

Figure 11: The lifetime curves of three decoding methods for different SFs (coding rate: 4/6).

(a) BER vs. SNR when CR = 4/5. (b) Lifetime vs. SNR when CR = 4/5. (c) BER vs. SNR when CR = 4/7. (d) Lifetime vs. SNR when CR = 4/7.

Figure 12: The bit error ratio and lifetime curves of three decoding methods for different coding rates when SF = 7.

LLDPC-SBP.We also implement the SBP algorithm to perform

LDPC decoding, as introduced in Section 2.3. We set the maximum

iteration of LLDPC-SBP is 10, 000.

6.2 Overall Performance

We evaluate the performance of LLDPC with various LoRa config-

urations, including 4 SFs (i.e., 7, 8, 9, 10) and 3 CRs (i.e., 4/5, 4/6,

and 4/7). We define the SNR threshold as the SNR when the BER is

1𝑒−4 on the BER-SNR curve. Because this BER can achieve a packet

delivery rate of 99.68% when the packet size is 40 bytes. The results

are shown in Figures 10, 11, 12, and 13.

BER. Figure 10 shows the performance of different SFs on BER

for SNR levels of [−30,−5] dB with a CR of 4/6. We can observe

that LLDPC obtained consistently lower BER than Hamming codes

from SF7 to SF10 across all SNR levels. The SNR threshold of LLDPC

at an SF can almost catch up with Hamming codes at a higher

SF. For example, comparing Figure 10(a) with Figure 10(b), the

SNR threshold of LLDPC at SF7 is close to Hamming codes’ at SF8.

Specifically, LLDPC lowers the SNR threshold by 2.6, 2.3, 2.3, and

2.2 dB from SF7 to SF10 compared to Hamming codes. LLDPC-SBP

performs the lowest BERs. This is because LLDPC-SBP performs

LDPC decoding with the SBP algorithm, which iterates many times

to correct erroneous bits. However, the cost is the high decoding

latency. LLDPC trades off the BER and decoding latency by adopting

the GNN-based BP algorithm. Our system can also switch to the

LLDPC-SBP for lower BER performance if applications relax the

decoding latency requirement, e.g., ACK is unnecessary.

Lifetime.We further evaluate the lifetime of LLDPC at different

LoRa settings and SNR levels, as shown in Figure 11. We can see that

LLDPC achieves a higher lifetime than Hamming codes, resulting

in a consistent lifetime gain. Compared to the Hamming codes,

LLDPC extends the median battery life by 51.2%, 31.2%, 13.9%, and

21.2% from SF7 to SF10. Additionally, Figure 11(d) shows that SF10

provides a lifetime of fewer than two years, much shorter than SF7

because SF10 uses longer symbols than SF7.

Coding Rate.We vary the CRs to examine the effect of different

CRs on the LLDPC’s performance. Figure 12 displays that as CR

increases, the SNR threshold decreases, indicating an increase in

SenSys ’22, November 6–9, 2022, Boston, MA, USA Kang Yang and Wan Du

(a) PDR vs. SNR when SF = 7. (b) PDR vs. SNR when SF = 8.

Figure 13: The Packet Delivery Ratio (PDR) performance

evaluation under two SFs when CR = 4/6.

error correction capability. Figure 12(c) reveals that the SNR thresh-

old for Hamming codes with a CR of 4/7 is also reduced compared

to the CRs of 4/5 and 4/6. This is because Hamming codes with a

CR of 4/7 can correct one erroneous bit per 7-bit codeword.

Packet Delivery Ratio (PDR). We also investigate PDR [41]

for different SFs at SNR levels of [−30,−5] dB with a CR of 4/6. For

a particular SNR, the PDR is the ratio of the number of correctly

decoded packets divided by the number of all packets transmitted

at that SNR. From Figure 13, we can see that regardless of the SFs

or SNRs, LLDPC still provides the highest PDR, which is consistent

with the conclusion obtained from the BER-SNR curves in Figure 10.

6.3 Performance under Different Settings

The above experiment results prove the effectiveness of LLDPC. We

further investigate whether the performance of LLDPC is sensitive

to the parity-check matrix and payload length.

6.3.1 Parity-Check Matrix. With different seeds, we can obtain dif-

ferent parity-check matrices for a specific CR, i.e., the entries of 1 at

rows and columns are changed. We change the parity-check matrix

to investigate whether different matrices impact the performance

of LLDPC. We randomly generate three parity-check matrices using

three seeds, where SF is set to 7 and CR is 4/6. Note that we need

to retrain GNN models for different matrices. Figure 14(a) shows

that all the seeds achieve the same BER-SNR curves. It verifies that

parity-check matrices generated from different seeds do not affect

the performance of LLDPC.

6.3.2 Payload Length. Given that different payload sizes generate

parity-check matrices of different dimensions, we vary the payload

size to evaluate the performance of LLDPC. We change the pay-

load size to 24, 32, and 48 bytes. The SF is 8, and CR is 4/5. The

corresponding dimensions of the parity-check matrix are 48 × 240,

64 × 320, and 96 × 480, respectively. We need to retrain GNN mod-

els for different payload sizes because the parity-check matrix is

changed. Figure 14(b) demonstrates that payload size does not affect

the BER-SNR curves.

6.4 Scalability of LLDPC

The SVM and GNN models used in LLDPC need to be trained

beforehand. We will evaluate whether the performance of the two

models is sensitive to the training data.

We divide the dataset introduced in Section 4 into multiple sub-

datasets based on different scenarios, i.e., LoRa node, location, and

(a) Different parity-check matrices. (b) Different payload length.

Figure 14: The performance of LLDPC under different parity-

check matrices and payload length.

(a) SVM model. (b) GNN model.

Figure 15: Cross-domain transfer ability analysis.

time. We use one sub-dataset to generate synthetic training data

and other sub-datasets to evaluate the performance of our SVM

and GNN models. For example, we collect a synthetic sub-dataset

at 11:00 AM from node A in room R1 for training SVM and GNN

models. Then we test the trained model on the three datasets. The

first sub-dataset is collected at 11:00 AM from Node B in Room R1

(marked as "Node"). The packets sent from node A in room R1 at

different times are the second sub-dataset (marked as "Time"). The

third sub-dataset is transmitted from Node A in Room R2 at 11:00

AM (marked as "Location").

Figure 15 shows the results. We can see that the SVM model

performs the same AUC (Area under the ROC Curve) on the three

sub-datasets. Their BER-SNR curves of LLDPC with the other three

datasets are overlapped with each other. This is because our models

are trained with all the different SNRs in a fine-grained way. The

SNR is used to quantify the channel quality. Thus, our SVM and

GNN models are agnostic to node, time, and location.

6.5 Analysis of LLDPC Components

In this section, we evaluate the effectiveness of the proposed two

components in LLDPC.

6.5.1 Spectrum-based LLR Extractor. To verify the effectiveness

of the LLR extractor, we compare the output difference between

the LoRa CSS demodulation and our LLR extractor. Specifically, a

positive or negative LLR can be used to determine whether a bit is 1

or 0, as introduced in Section 2.3. If the two methods have different

values at the same bit position, the difference is incremented by

1. We compare the difference of millions of packets for different

configurations (e.g., SFs and CRs) at different SNR levels.We observe

that the difference is always zero regardless of SFs, CRs, or SNRs. It

LLDPC: A Low-Density Parity-Check Coding Scheme for LoRa Networks SenSys ’22, November 6–9, 2022, Boston, MA, USA

(a) BER. (b) Lifetime.

Figure 16: LLDPCwith andwithout symbol-level information

when SF = 8, CR = 4/7.

Table 3: Confusion matrix for SVM model when SF = 7.

Prediction

Correct chirp Incorrect chirp

Correct chirp 95.8% 4.2%
Label

Incorrect chirp 0.3% 99.7%

indicates that the LLR extractor does not increase erroneous bits,

but provides more information, i.e., the confidence of bit values.

6.5.2 Symbol-Aware LLR Enhancement. We first show confusion

matrices to verify the effectiveness of our proposed symbol features

and SVM models. To obtain the performance gain of symbol-aware

LLR enhancement, we perform LDPC decoding with and without

this enhancement using a trained GNN model.

Results. Table 3 exhibits a confusion matrix for SF7 at different

SNR levels. We can find that the false positive ratio is low, i.e., 0.3%,

and the false negative ratio is higher than the false positive ratio.

This is because the features of incorrect symbols differ from correct

ones, but some correct ones have similar features to incorrect ones.

We then use the LLR without and with symbol-level informa-

tion to perform LDPC decoding with trained GNN models. From

Figure 16, we can find that the enhanced LLR could decrease the

median BER by 27.3% at the SNR range of [−30,−5] dB. Correspond-
ingly, it increases the median lifetime by 47.7%. It further sustains

the effectiveness of our symbol-aware LLR enhancement module.

6.6 Campus-Scale Testbed Experiments

In-Field Experimental Design. There is only additive white

Gaussian noise in the synthetic dataset used in the previous eval-

uation section. However, there are other types of noise in actual

packets, such as multipath interference. Additionally, LoRa uses an

unlicensed spectrum, making it inevitable that multiple networks

sharing the same sub-GHz unlicensed band will be co-located. This

will lead to cross-technology interference. To examine LLDPC on

real datasets, we deploy LoRa nodes at different locations covering

various land cover types (e.g., ponds, trees, and buildings).

Next, we set SFs and CRs to suit the link quality. During the real

data collection, we also record the SNRs of the received packets, re-

flecting the link quality. Thus, we can mimic LoRa links whose SNR

changes with the recorded SNRs. The link adaptation is conducted

on this simulated link.

2070 m

11
70

 m

9

0

1
2

3

4

58

6

7

Figure 17: The illustration of our in-field testbed and the

topology of the LoRa nodes and the receiver.

(a) BER. (b) Lifetime.

Figure 18: BER and lifetime performance at ten different

locations on a campus-scale testbed.

Testbed. In in-filed experiments, we deploy LoRa nodes at ten

locations, as shown in Figure 17. Location #0 is the closest, and

location #8 is the farthest. The SF settings at ten locations are as

follows. At locations #0, #1, and #2, we use SF7. SF8 is selected at

locations #3 and #4. We use SF9 to send packets at locations #5

and #9. At locations #6, #7, and #8, SF10 is used. Each LoRa node

transmits 150 packets with an interval of 10s. The payload size is 32

bytes, and the CR is 4/5. Hence, the packet size is 40 bytes. Nodes

are equipped with a 3,000mAh power bank.

6.6.1 Performance on the Real Dataset. We compute the BER and

lifetime for each LoRa node.

Figure 18 shows the BER and the lifetime of Hamming codes,

LLDPC, and LLDPC-SBP. On average, LLDPC provides a substantial

performance improvement over the Hamming codes on the BER

and lifetime. In particular, LLDPC can reduce the average BER of

Hamming codes among ten nodes by 50.8% and extends the average

lifetime by 19.3%.

In Figure 18(a), LLDPC has a smaller BER than Hamming codes

at all locations, e.g., LLDPC decreases the BER at location #6 by

54.5% to 2.63%, and LLDPC-SBP further reduces the BER by 48.8% to

1.19%. Compared with location #8, location #6 is near the receiver.

But location #6 has a higher BER with Hamming codes due to a low

SNR level incurred by the blockage of trees and buildings. We also

estimate the lifetime of LoRa nodes at each location. Figure 18(b)

displays that the lifetime can be extended by 3.38 to 5.25 years

with LLDPC. The maximum lifetime can reach 9.08 years by using

LLDPC-SBP at location #0. Compared with Hamming codes, LLDPC

SenSys ’22, November 6–9, 2022, Boston, MA, USA Kang Yang and Wan Du

(a) BER. (b) Lifetime.

Figure 19: Joint selection of SF and CR for link adaption.

lowers the BER and extends the lifetime significantly with a CR

of 4/5. On the other hand, we observe that the performance of

LLPDC in the natural environment degrades by 7.8% compared to

the performance in the synthetic dataset. In the future, we could use

the real collected packets to fine-tune our SVM and GNN models

to adapt to the natural environment.

If we increase CR (e.g., 4/6), the performance gain of LLDPC

is more significant than the CR of 4/5. This is because the 4/6

Hamming codes cannot correct any erroneous bits [3]; it just adds

the overhead of more parity-check bits. But LLDPC provides a more

powerful error correction ability.

6.6.2 Integration of LLDPC into LoRaWAN. We utilize the simu-

lated links to configure SFs and CRs jointly. Specifically, we use

the GitHub library [42] to randomly generate LoRa packets with

specific SF and CR determined by the ADR mechanism introduced

in Section 5. The library is widely used to generate LoRa packets in

the current work [34, 43, 44]. Then packets are transmitted in the

additive white Gaussian noise channels with an SNR obtained in

the collected SNRs. We use the three recently received packets to

predict the SNR of the subsequent transmission. In practice, pack-

ets are sent with a low-duty cycle, e.g., 10 minutes. Since nodes

send packets with an interval of 10s, we can receive 60 packets per

10 minutes. Hence, to implement a 10-minute duty cycle, we use

the first, 61st, and 121st packets to predict the SNR of the 181st

transmission and so on. We run LoRaWAN and LLDPC, respectively.

Results. Figure 19(a) shows the lifetime of LoRaWANand LLDPC.

We can find that LLDPC can extend the lifetime of nodes by 86.7%

on average, compared with LoRaWAN. The reasons are twofold.

The link quality varies dynamically from -4dB to -15dB, making

the SNR prediction inaccurate. However, LLDPC provides a high

error correction ability to handle inaccurate SNR prediction. From

Figure 19(b), we can see that LLDPC reaches a lower BER than

LoRaWAN by 97.1%. Second, LLDPC can achieve robust communi-

cation with smaller SF than LoRaWAN. For the same link quality,

LLDPC prefers to use smaller SFs than LoRaWAN. Compared to

the standard LoRa PHY, LLDPC can achieve lower SNR thresholds

with the same SF and CR. Therefore, for a given SNR, LLDPC can

achieve the same BER with smaller SF and CR, which can signifi-

cantly extend the node lifetime.

6.7 Storage Overhead and Running Time

In LLDPC, we need to consider the overhead of the two parts, i.e.,

gateways and LoRa nodes.

Table 4: Time consumption (unit: s) of GNN-based BP, SBP,

and LLDPC to decode one packet for different CRs on two

platforms (PC/Raspberry Pi 3) when SF = 9. Note that GPU is

disabled while performing LDPC decoding online on the PC.

CR = 4/5 CR = 4/6 CR = 4/7

SBP 0.86/2.51 1.76/3.27 2.95/5.46

GNN-based BP 0.021/0.434 0.026/0.628 0.068/1.502

LLDPC 0.043/0.548 0.054/0.749 0.097/1.871

Table 5: Storage and energy consumption of LLDPC on LoRa

nodes for MCU and Radio, where the energy is calculated for

each packet with a 32-byte payload and SF is set to 7.

CR = 4/5 CR = 4/6 CR = 4/7

Storage (KB) 5.0 6.3 11.0

Energy of MCU (mJ) 0.9 1.5 2.4

Energy of Radio (mJ) 480.7 619.8 777.1

6.7.1 Gateways. We run our SVM and GNN models on a local PC

and a single-board computer of Raspberry Pi 3. We measure the

storage overhead and running time. The running time measures

the time used to decode one packet and is computed by running

thousands of times and taking the average. Since the gateway is

grid-powered, we do not consider its energy consumption.

Results. The storage overheads of SVM plus GNN models are

15.7, 16.3, and 16.8 MB for CRs of 4/5, 4/6, and 4/7. We find that

the model size increases as CRs get larger. This is because a larger

CR means a larger packet size, which requires a larger model and

more parameters to handle inputs.

According to the LoRaWAN specification, LoRa nodes must re-

ceive an ACK in the first or second receiving window before trans-

mitting the next packet. These two windows will be opened at a

delay of one and two seconds after the end of the uplink. Given this

constraint, Table 4 further displays the running time of the SBP

algorithm, GNN-based BP, and the whole system. Similar to storage

overhead, running time increases with CRs. It shows that our GNN-

based BP algorithm reduces the average decoding latency of Soft BP

by 58.09×. We also measure the sum of the elapsed time of LLDPC,

including the spectrum-based LLR extractor, the symbol-aware LLR

enhancement module, and the GNN model. With a powerful com-

puting computer, it takes less than 100 ms. On the Raspberry Pi 3,

the consumed time is about 1.056s with a deviation of 0.582s. For

CRs of 4/5 and 4/6, the entire running time is less than 1s, which

allows the gateway to send ACKs within the first receiving window

of the LoRa node. LLDPC consumes more than one second when

CR is 4/7. Thus, we send ACKs at the second receiving window

with a time limit of two seconds.

6.7.2 LoRa Nodes. In LLDPC, the overhead of nodes comes from

two parts, i.e., storing the parity-check matrix and generating en-

coded bits. For different CRs, we need to use different parity-check

matrices. By extending an SD card module on the Arduino board,

we can store parity-check matrices with CR of 4/5, 4/6, and 4/7

in the Arduino board. To generate encoded bits, we first read the

LLDPC: A Low-Density Parity-Check Coding Scheme for LoRa Networks SenSys ’22, November 6–9, 2022, Boston, MA, USA

parity-check matrix stored on the SD card module row by row.

Then we perform XOR operations to encode the data.

Results. Table 5 shows the storage overheads of parity-check

matrices under different CRs. We can see that the size of the matrix

increases as the CRs go up. This is because the larger CR has a

larger number of rows.

The energy consumption of LDPC encoding and transmitting is

also shown in Table 5. As CRs increase, energy consumption also

increases. During the encoding process, the MCU is active with

a power of 23.48mW [38]. Therefore, such the encoding process

consumes energy of 0.9 mJ (23.48mW × 42.5ms) when CR is set to

4/5. It shows that for a node with a battery capacity of 3000 mAh

and a voltage of 1.5 V, the encoding process consumes only 0.6E-

5% of the energy. It is almost negligible compared to the energy

consumed in the transmission process.

7 RELATEDWORK

Error Correction in LoRa Networks. Error correction is widely

adopted in wireless networks [45–49]. In WiFi and cellular net-

works, multiple antennas are used to improve the SNRs of the

received signal. Recent studies for LoRa [3, 39, 40, 50, 51] borrow

this idea. Choir [50] enhances the SNRs of the received signal by

deploying multiple co-located LoRa nodes. Charm [39] decodes

weak signals by organizing multiple gateways to detect combined

energy peaks in the spectrum. OPR[3] utilizes disjoint link layer bit

errors received by multiple gateways to detect erroneous bits and

correct them using the CRC defined in the MAC layer. Nephalai [51]

transmits compressed PHY samples to the cloud and demodulates

compressed PHY samples with the sparse approximation. In addi-

tion, Chime [40] tries to avoid multipath interference via choosing

the operating frequency of LoRa nodes, obtaining extra SNR gain

for LoRa transmission. All of these systems require multiple pairs

of transceivers. In contrast, LLDPC achieves additional SNR gain

through the proposed GNN-based BP algorithm to perform LDPC

decoding using only one pair of transceivers. Therefore, LLDPC

can supplement existing works and be further enhanced by the

diversity gain of multiple gateways.

Elshabrawy et al. [52] theoretically analyze the benefits of adopt-

ing Non-Binary Single Parity-Check Codes. However, the encoding

process of the Non-Binary Single Parity-Check Codes requires the

arithmetic calculation in theGF, which is computation-expensive [8].

In contrast, LLDPC uses binary LDPC codes, which involve only

simple XOR operations. These XOR operations can be done at the

sensor node without consuming much energy. In addition, we pro-

pose a novel encoding scheme, the design, and the implementation

of the architecture based on LDPC codes.

LoRa Throughput. FTrack [53] NSacle [35], CoLoRa [54], Curv-

ingLoRa [55], and PCube [56] develop several methods to resolve

the packet collisions in LoRa, thereby increasing the throughput

of the LoRa network [57]. In contrast, LLDPC developed a system

that integrates LDPC codes into LoRa to extend the communication

range of LoRa nodes and optimize energy efficiency, paralleling

research in this category.

NELoRa [34] proposed a neural-enhanced LoRa demodulation

method, which exploits the feature abstraction ability of deep learn-

ing to support LoRa demodulation under ultra-low SNR. LLDPC

targets a different task, i.e., FEC coding. Both are necessary compo-

nents of LoRa physical layer. LLDPC extracts LLRs by the amplitude

spectrum from CSS modulation with the SoftMax operation (Equa-

tion 5). Our LLR extractor can also use the output of NELoRa to

obtain the LLR of bits. This is because NELoRa can output the

probabilities of all frequency bins based on its final SoftMax layer.

Therefore, NELoRa and LLDPC could work together for a more

robust LoRa communication.

Graph Neural Network-based BP Algorithm. Deep learning-

based methods are proposed for various applications, such as wire-

less networking [34], smartwatch-based arm tracking [58], and

smartphone apps usage prediction [59, 60]. The belief propagation

algorithm performs iterative message passing between bit nodes

and factor nodes on factor graphs. Researchers are trying to im-

plement message exchange using GNN models [16, 61]. NEBP [61]

designed a GNNmodel to operate on the factor graph and exchange

information with traditional BP algorithm for error correction de-

coding, which is still time-consuming. Therefore, it cannot be used

in the LoRaWAN. FGNN [16] generalizes graph neural networks

to factor graph neural networks, which allows the network to cap-

ture higher-order dependencies among bit nodes and factor nodes.

LLDPC leverages large-scale synthetic LoRa packets to generate the

required feature for the GNN model, then selects the appropriate

number of GNN layers empirically to perform fast LDPC decoding.

8 CONCLUSION

This paper presents LLDPC, an efficient error correction coding

scheme for LoRa networks. We integrate LDPC codes in LoRa by

combining a spectrum-based LLR extractor, a symbol-aware LLR

enhancement module, and a GNN-based belief propagation algo-

rithm. LLDPC can provide exceptional error correction capability

compared with standard Hamming codes in LoRa. Extensive simu-

lation on the large-scale synthetic dataset and in-field experiment

demonstrate the effectiveness of LLDPC.

ACKNOWLEDGEMENTS

We would like to thank our anonymous shepherd and reviewers

for their constructive comments. This research was partially sup-

ported by a Fresno-Merced Future of Food Innovation Initiative

(F3) challenge grant, the UC National Laboratory Fees Research

Program grant #69763, and a 2022 Faculty Research Award through

the Academic Senate Faculty Research Program at UC Merced.

REFERENCES
[1] LoRaWAN𝑇𝑀 1.1 Specification . https://lora-alliance.org/wp-content/uploads/

2020/11/lorawantm_specification_-v1.1.pdf, 2017.
[2] Jothi Prasanna Shanmuga Sundaram, Wan Du, and Zhiwei Zhao. A survey on

LoRa networking: Research problems, current solutions, and open issues. IEEE
Communications Surveys & Tutorials, 22(1):371–388, 2019.

[3] Artur Balanuta, Nuno Pereira, Swarun Kumar, and Anthony Rowe. A cloud-
optimized link layer for low-power wide-area networks. In ACM MobiSys, 2020.

[4] SX1272/3/6/7/8: LoRa Modem Design Guide. https://www.openhacks.com/
uploadsproductos/loradesignguide_std.pdf, 2013.

[5] Ian F Akyildiz, TommasoMelodia, and Kaushik R Chowdury. Wireless multimedia
sensor networks: A survey. IEEE Wireless Communications, 14(6):32–39, 2007.

[6] Wan Du, Zhenjiang Li, Jansen Christian Liando, and Mo Li. From rateless to
distanceless: Enabling sparse sensor network deployment in large areas. In ACM
SenSys, 2014.

[7] Wei Song, Yifei Shen, Liping Li, Kai Niu, and Chuan Zhang. A general construction
and encoder implementation of polar codes. IEEE Transactions on Very Large
Scale Integration Systems, 28(7):1690–1702, 2020.

SenSys ’22, November 6–9, 2022, Boston, MA, USA Kang Yang and Wan Du

[8] Stephen B Wicker and Vijay K Bhargava. Reed-Solomon codes and their applica-
tions. John Wiley & Sons, 1999.

[9] Robert Gallager. Low-density parity-check codes. IRE Transactions on information
theory, 8(1):21–28, 1962.

[10] Claude Elwood Shannon. A mathematical theory of communication. ACM
SIGMOBILE mobile computing and communications review, 5(1):3–55, 2001.

[11] 5G; NR; Multiplexing and channel coding. https://www.etsi.org/deliver/etsi_ts/
138200_138299/138212/15.02.00_60/ts_138212v150200p.pdf, 2018.

[12] Alberto Morello and Vittoria Mignone. DVB-S2: The second generation standard
for satellite broad-band services. Proceedings of the IEEE, 94(1):210–227, 2006.

[13] IEEE Standard for Information technology–Telecommunications and informa-
tion exchange between systems Local and metropolitan area networks–Specific
requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications. IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007),
2012.

[14] Fatma Benkhelifa, Yathreb Bouazizi, and Julie A McCann. How Orthogonal is
LoRa Modulation? IEEE Internet of Things Journal, 2022.

[15] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard
Scholkopf. Support vector machines. IEEE Intelligent Systems and their ap-
plications, 13(4):18–28, 1998.

[16] Zhen Zhang, Fan Wu, and Wee Sun Lee. Factor graph neural networks. In
NeurIPS, 2020.

[17] LLDPC’s code. https://github.com/kangyang73/LLDPC-SenSys22, 2022.
[18] R Tanner. A recursive approach to low complexity codes. IEEE Transactions on

information theory, 27(5):533–547, 1981.
[19] Arduino Uno Rev3. https://store-usa.arduino.cc/products/arduino-uno-rev3/

?selectedStore=us, 2021.
[20] Juntan Zhang and Marc PC Fossorier. A modified weighted bit-flipping decoding

of low-density parity-check codes. IEEE Communications Letters, 8(3):165–167,
2004.

[21] Jianguang Zhao, Farhad Zarkeshvari, and Amir H Banihashemi. On implemen-
tation of min-sum algorithm and its modifications for decoding low-density
parity-check (LDPC) codes. IEEE transactions on communications, 53(4):549–554,
2005.

[22] Rolf Johannesson and Kamil Sh Zigangirov. Fundamentals of convolutional coding.
John Wiley & Sons, 2015.

[23] Eugenio Magistretti, Krishna Kant Chintalapudi, Bozidar Radunovic, and Ra-
machandran Ramjee. WiFi-Nano: Reclaiming WiFi efficiency through 800 ns
slots. In ACM MobiCom, 2011.

[24] Yong Soo Cho, Jaekwon Kim, Won Y Yang, and Chung G Kang. MIMO-OFDM
wireless communications with MATLAB. John Wiley & Sons, 2010.

[25] Wan Du, Jansen Christian Liando, and Mo Li. Softlight: Adaptive visible light
communication over screen-camera links. In IEEE INFOCOM, 2016.

[26] Wan Du, Jansen Christian Liando, and Mo Li. Soft hint enabled adaptive visible
light communication over screen-camera links. IEEE Transactions on Mobile
Computing, 16(2):527–537, 2017.

[27] Srikar Kasi and Kyle Jamieson. Towards quantum belief propagation for LDPC
decoding in wireless networks. In ACM MobiCom, 2020.

[28] Kang Yang, Xi Zhao, Jianhua Zou, and Wan Du. ATPP: A mobile app prediction
system based on deep marked temporal point processes. In IEEE DCOSS, 2021.

[29] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE.
Journal of machine learning research, 9(11), 2008.

[30] Huatao Xu, Pengfei Zhou, Rui Tan, Mo Li, and Guobin Shen. LIMU-BERT:
Unleashing the Potential of Unlabeled Data for IMU Sensing Applications. In
ACM SenSys, 2021.

[31] Semtech SX1276 datasheet. https://www.semtech.com/products/wireless-rf/lora-
transceivers/sx1276, 2020.

[32] GR-LoRa. https://github.com/rpp0/gr-lora, 2021.
[33] MuhammadOsama Shahid, Millan Philipose, Krishna Chintalapudi, Suman Baner-

jee, and Bhuvana Krishnaswamy. Concurrent interference cancellation: decoding
multi-packet collisions in LoRa. In ACM SIGCOMM, 2021.

[34] Chenning Li, Hanqing Guo, Shuai Tong, Xiao Zeng, Zhichao Cao, Mi Zhang,
Qiben Yan, Li Xiao, Jiliang Wang, and Yunhao Liu. NELoRa: Towards Ultra-low
SNR LoRa Communication with Neural-enhanced Demodulation. In ACM SenSys,
2021.

[35] Shuai Tong, Jiliang Wang, and Yunhao Liu. Combating packet collisions using
non-stationary signal scaling in LPWANs. In ACM MobiSys, 2020.

[36] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in PyTorch. 2017.

[37] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[38] Jansen C Liando, Amalinda Gamage, Agustinus W Tengourtius, and Mo Li.
Known and unknown facts of LoRa: Experiences from a large-scale measurement
study. ACM Transactions on Sensor Networks, 15(2):1–35, 2019.

[39] Adwait Dongare, Revathy Narayanan, Akshay Gadre, Anh Luong, Artur Bal-
anuta, Swarun Kumar, Bob Iannucci, and Anthony Rowe. Charm: exploiting
geographical diversity through coherent combining in low-power wide-area
networks. In ACM/IEEE IPSN, 2018.

[40] Akshay Gadre, Revathy Narayanan, Anh Luong, Anthony Rowe, Bob Iannucci,
and Swarun Kumar. Frequency Configuration for Low-Power Wide-Area Net-
works in a Heartbeat. In USENIX NSDI, 2020.

[41] Weifeng Gao, Wan Du, Zhiwei Zhao, Geyong Min, and Mukesh Singhal. Towards
energy-fairness in LoRa networks. In IEEE ICDCS, 2019.

[42] LoRaPHY. https://github.com/jkadbear/LoRaPHY, 2022.
[43] Jinyan Jiang, Zhenqiang Xu, Fan Dang, and Jiliang Wang. Long-range ambient

LoRa backscatter with parallel decoding. In ACM MobiCom, 2021.
[44] Shuai Tong, Zilin Shen, Yunhao Liu, and Jiliang Wang. Combating link dynamics

for reliable LoRa connection in urban settings. In ACM MobiCom, 2021.
[45] Wan Du, Zhenjiang Li, Jansen Christian Liando, and Mo Li. From rateless to dis-

tanceless: Enabling sparse sensor network deployment in large areas. IEEE/ACM
Transactions on Networking, 24(4):2498–2511, 2015.

[46] Aditya Gudipati and Sachin Katti. Strider: Automatic rate adaptation and collision
handling. In ACM SIGCOMM, 2011.

[47] Wan Du, Jansen Christian Liando, Huanle Zhang, and Mo Li. When pipelines
meet fountain: Fast data dissemination in wireless sensor networks. In ACM
SenSys, 2015.

[48] Binbin Chen, Ziling Zhou, Yuda Zhao, and Haifeng Yu. Efficient error estimating
coding: Feasibility and applications. In ACM SIGCOMM, 2010.

[49] Wan Du, Jansen Christian Liando, Huanle Zhang, and Mo Li. Pando: Fountain-
enabled fast data dissemination with constructive interference. IEEE/ACM Trans-
actions on Networking, 25(2):820–833, 2017.

[50] Rashad Eletreby, Diana Zhang, Swarun Kumar, and Osman Yağan. Empowering
low-power wide area networks in urban settings. In ACM SIGCOMM, 2017.

[51] Jun Liu, Weitao Xu, Sanjay Jha, and Wen Hu. Nephalai: towards LPWAN C-RAN
with physical layer compression. In ACM MobiCom, 2020.

[52] Tallal Elshabrawy and Joerg Robert. Enhancing LoRa capacity using non-binary
single parity check codes. In IEEE WiMob, 2018.

[53] Xianjin Xia, Yuanqing Zheng, and Tao Gu. FTrack: Parallel decoding for LoRa
transmissions. In ACM SenSys, 2019.

[54] Shuai Tong, Zhenqiang Xu, and Jiliang Wang. CoLoRa: Enabling multi-packet
reception in LoRa. In IEEE INFOCOM, 2020.

[55] Chenning Li, Xiuzhen Guo, Longfei Shangguan, Zhichao Cao, and Kyle Jamieson.
CurvingLoRa to Boost LoRa Network Throughput via Concurrent Transmission.
In USENIX NSDI, 2022.

[56] Xianjin Xia, Ningning Hou, Yuanqing Zheng, and Tao Gu. PCube: scaling LoRa
concurrent transmissions with reception diversities. In ACM MobiCom, 2021.

[57] Amalinda Gamage, Jansen Christian Liando, Chaojie Gu, Rui Tan, and Mo Li.
LMAC: Efficient carrier-sense multiple access for LoRa. In ACM MobiCom, 2020.

[58] Miaomiao Liu, Sikai Yang, Wyssanie Chomsin, and Wan Du. Real-Time Tracking
of Smartwatch Orientation and Location by Multitask Learning. In ACM SenSys,
2022.

[59] Zhihao Shen, Kang Yang, Zhao Xi, Jianhua Zou, and Wan Du. DeepAPP: A Deep
Reinforcement Learning Framework for Mobile Application Usage Prediction.
IEEE Transactions on Mobile Computing, pages 1–1, 2021.

[60] Zhihao Shen, Kang Yang, Wan Du, Xi Zhao, and Jianhua Zou. DeepAPP: A Deep
Reinforcement Learning Framework for Mobile Application Usage Prediction. In
ACM SenSys, 2019.

[61] Victor Garcia Satorras and Max Welling. Neural enhanced belief propagation on
factor graphs. In AISTATS, 2021.

