
CLUE: Safe Model-Based RL HVAC ControL Using Epistemic
Uncertainty Estimation

Zhiyu An
University of California, Merced

zan7@ucmerced.edu

Xianzhong Ding
University of California, Merced

xding5@ucmerced.edu

Arya Rathee*

University of California, Santa Cruz
arathee@ucsc.edu

Wan Du
University of California, Merced

wdu3@ucmerced.edu

Abstract
Model-Based Reinforcement Learning (MBRL) has been widely
studied for Heating, Ventilation, and Air Conditioning (HVAC) con-
trol in buildings. One of the fundamental problems is the large
amount of data required to train a neural network for building dy-
namics modeling. In this paper, we developed CLUE, a safe MBRL
HVAC control approach that can achieve low human comfort vio-
lation with a dynamics model trained on a small dataset. We used
Gaussian Process (GP) as the building dynamics model, which pro-
vides the uncertainty of each output. The uncertainty result is then
integrated into a safe HVAC control algorithm. Although GP has
been studied for HVAC control, this work provides a data-efficient
GP modeling method. We designed a novel meta kernel learning
technique that incorporates domain knowledge from historical data
of multiple buildings to set the GP kernel hyperparameters. Our
method can significantly reduce the amount of data required for GP
hyperparameter setting. Furthermore, we incorporate the GP-based
uncertainty into a Model Predictive Path Integral (MPPI) process
to find a safe, energy-efficient action for each control cycle. We
generate a large number of action trajectories by the GP building
dynamics model, and find the optimal trajectory by a novel MPPI
objective function that considers the uncertainty of every action in all
trajectories. We then execute the first action of the optimal trajectory.
Extensive experiments in a simulated five-zone building show that
CLUE only needs seven days of training data to provide comparable
energy saving as the state-of-the-art MBRL method, but with 12.07%
less comfort violations.

CCS Concepts
• Computing methodologies→ Control methods.

Keywords
Epistemic uncertainty estimation, Model-based reinforcement learn-
ing, HVAC control, Model predictive control

*This work was accomplished when Arya Rathee was an undergraduate student at UC
Merced and conducted an internship in Dr. Wan Du’s research group.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
BuildSys ’23, November 15–16, 2023, Istanbul, Turkey
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0230-3/23/11. . . $15.00
https://doi.org/10.1145/3600100.3623742

ACM Reference Format:
Zhiyu An, Xianzhong Ding, Arya Rathee, and Wan Du. 2023. CLUE: Safe
Model-Based RL HVAC ControL Using Epistemic Uncertainty Estimation.
In The 10th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation (BuildSys ’23), November 15–16, 2023,
Istanbul, Turkey. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3600100.3623742

1 Introduction
Model-Based Reinforcement Learning (MBRL) is a promising ap-
proach for optimizing Heating, Ventilation, and Air Conditioning
(HVAC) control in comparison to traditional Model Predictive Con-
trol (MPC) and Model-Free RL (MFRL) methods [1]. MPC [2]
requires an accurate building thermal dynamics model, which is
hard to formulate analytically [3]. MFRL directly learns a control
policy by interacting with the building, but it normally takes years to
converge [4, 5]. MBRL trains a building dynamics model using his-
torical data and uses the model to find the best control action [4, 6].
One fundamental problem of MBRL-based HVAC control is the
large amount of training data required to converge. For example,
𝑀𝐵2𝐶 [4] models the building dynamics by an ensemble of deep
neural networks and uses a Model Predictive Path Integral (MPPI)
algorithm to find the best control action. The deep ensemble model
requires 183 days of training data to produce accurate predictions
for the controller.

Extensive experiments on a simulated five-zone office building
demonstrate that even if years of training data is used, the model
still has epistemic uncertainty due to the training data bias, i.e., the
model’s predictions are not accurate at some states that the building
does not experience often. To address this problem, we propose an
MBRL-based HVAC control approach that can tolerate the inaccu-
racy of the building dynamics model trained on a small dataset. Our
approach is aware of the model’s prediction uncertainty and takes
conservative control action when the prediction is uncertain. To en-
able safe HVAC control, we needed to first quantify the epistemic
uncertainty of building dynamics models.

Epistemic uncertainty estimation has been used to improve the
control performance in robotic motion planning [7] and RL in gen-
eral [8]. For problems with low dimensions and discrete state spaces,
such as multi-armed bandits [9], the count-based method [10] is used.
It estimates the model error of the prediction on input by counting the
number of data points in the training data with this input. However,
building dynamics involve high dimensional continuous variables,
which makes count-based methods unsuitable. Additionally, deep
ensemble (DE) [8, 11] uses several neural networks to collectively

https://doi.org/10.1145/3600100.3623742
https://doi.org/10.1145/3600100.3623742
https://doi.org/10.1145/3600100.3623742

make a prediction and measures the level of agreement between the
predictions as an uncertainty estimation result. As introduced above,
it requires a large amount of data to train the neural networks for
HVAC control.

To close this gap, we propose CLUE, a novel MBRL system for
safe HVAC control, which uses a Gaussian Process (GP) model for
the uncertainty-aware modeling of building dynamics. A GP model
takes the state of the building (zone temperature, outdoor tempera-
ture, occupancy, etc.) and an action (heating and cooling setpoints)
as inputs. It outputs a prediction of the state in the next time step as a
Gaussian distribution comprised of a prediction mean and a variance.
The variance is larger when the prediction is less certain, usually due
to the lack of data about the given input. We used this variance as
an indicator of epistemic uncertainty. Previous research in building
control has demonstrated that GP models, in terms of model error,
have the potential to outperform neural networks, random forests,
and support vector machines [12, 13]. However, to incorporate GP
into a safe and data-efficient HVAC control process, CLUE has two
novel components. 1) Although GP methods are non-parametric,
they require a predefined kernel function, which has a set of hyper-
parameters to instantiate. We design a new training procedure of
GP-based building dynamics modeling, called meta kernel learning,
which significantly improves the efficiency of the GP hyperparame-
ter setting. 2) We incorporate the GP-based uncertainty into an MPPI
algorithm to find a safe, energy-efficient action.

Selecting appropriate kernel parameters for GP with limited data
remains a challenge [14]. Traditional kernel selection either relies on
human experts to hand-pick the kernel parameters or uses gradient
descent to train them. These methods are either costly or require large
amounts of data to train a suitable kernel. If the kernel parameters
are unsuitable, GP may perform poorly [15]. To address this issue,
we designed a meta kernel learning procedure. Our key observation
is that while it is sometimes difficult to obtain a large amount of
historical data for a target building, it is easy to obtain large and
comprehensive datasets from other buildings. With meta kernel
learning, the reference data from multiple buildings enables the
building dynamics model to automatically learn an effective kernel
initialization, which can significantly reduce the learning burden
without impacting the model’s accuracy. In our experiment, we found
that our method outperformed all baselines in terms of modeling
accuracy and uncertainty estimation accuracy.

To effectively translate uncertainty estimation to safe control ac-
tions, we developed a confidence-based control algorithm, which
allows us to safely and effectively apply MBRL when the model is
inaccurate. With the MPPI control algorithm, we first generated a
large number of action trajectories by our building dynamics model.
Trajectories are the sequences of actions for the coming future time
steps. The MPPI finds the trajectory that provides the highest energy
savings and lowest human comfort violation rate. The controller then
executes the first action of that trajectory. To incorporate GP-based
uncertainty estimation in the above MPPI process, we developed a
two-stage uncertainty-aware HVAC control algorithm that selects an
action with a high reward and confidence. First, we used a threshold
to filter out the trajectories whose first action has high uncertainty.
Even if these trajectories are selected, their first actions cannot be
executed due to high uncertainty. To find the best confidence thresh-
old for safe HVAC control, we needed to know the relationship

between the confidence value provided by the GP model and the
expected model error. We designed an algorithm that can optimize
the uncertainty threshold offline by testing the dynamics model on
historical data. Second, we selected the optimal trajectory with a
new MPPI objective function that considers the uncertainty of every
action in all the remaining trajectories. Finally, we designed a fall-
back mechanism that employs a relatively reliable default control
policy to override the MBRL control actions when no safe action is
selected by the above control process.

We evaluated CLUE with comprehensive simulations in a 463𝑚2

five-zone office building in three cities with EnergyPlus [16]. We first
tested the uncertainty estimation accuracy of the proposed GP-based
building dynamics model. The results show that the building dynam-
ics model in CLUE outperformed all baselines in terms of modeling
and uncertainty estimation accuracy. We then employed CLUE to
control the simulated building and compared the human comfort
and energy consumption between our system and the state-of-the-art
MBRL solution. CLUE on average reduced comfort violations by
12.07% compared to the state-of-the-art MBRL method, with similar
energy-saving and excellent data efficiency, i.e., CLUE reduced the
data requirement from hundreds of days to only seven days.

In summary, this paper provides the following contributions.
• We are the first to include epistemic uncertainty estimation in

shooting-based MBRL methods for HVAC control.
• We develop CLUE, a safe MBRL HVAC control system that

adopts two novel design components, meta kernel learning
and confidence-based control.
• We conducted comprehensive experiments with EnergyPlus

simulations.

2 MBRL for HVAC Control
HVAC control can be formulated as a Markov Decision Process
(MDP), denoted as M : {S,A, 𝑟 ,P, 𝛾}, consisting of the state space S,
the action space A, the reward function 𝑟 : S×A→ R, the dynamics
function P(𝑠′ |𝑠, 𝑎) and discount factor 𝛾 . At each time step 𝑡 , the
controller is in state 𝑠𝑡 ∈ S, executes some action 𝑎𝑡 ∈ A, receives
reward 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡), and transitions to the next state 𝑠𝑡+1 according
to the dynamics function 𝑠𝑡+1 ∼ P(𝑠𝑡 , 𝑎𝑡). At each time step, the
goal is to choose the action that maximizes the discounted sum of
future rewards, given by

∑∞
𝑡 ′=𝑡 𝛾

𝑡 ′−𝑡𝑟 (𝑠𝑡 ′ , 𝑎𝑡 ′), where 𝛾 ∈ [0, 1] is
the discount factor that prioritizes near-term rewards.

MBRL-based control has two parts: the dynamics model and the
controller. The dynamics model is used to make predictions, which
are then used by the controller to choose an action. Let 𝑓𝜃 (𝑠𝑡 , 𝑎𝑡)
denote a learned discrete-time dynamics model parameterized by 𝜃 ,
given a set of historical data {(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)}𝑛 . The dynamics model
takes the current state 𝑠𝑡 and action 𝑎𝑡 and outputs a prediction
of the next state at 𝑠𝑡+1. The controller then solves the following
optimization problem:

(𝑎𝑡 , · · · , 𝑎𝑡+𝐻−1) = arg max
(𝑎𝑡 ,· · · ,𝑎𝑡+𝐻−1)

𝑡+𝐻−1∑︁
𝑡 ′=𝑡

𝛾𝑡
′−𝑡𝑟 (𝑠𝑡 ′ , 𝑎𝑡 ′) (1)

The controller picks the action sequence that maximizes the cumula-
tive discounted rewards of the future 𝐻 time steps. In practice, it is
often desirable to solve this optimization at each time step, i.e., exe-
cuting only the first action from the sequence and then re-planning
at the next time step with the updated state information. While the

2

15 20 25 30 35
Zone state (°C)

0.000

0.025

0.050

0.075

0.100

0.125

Pr
ob

ab
ilit

y
de

ns
ity

0.0

0.5

1.0

1.5

2.0

M
od

el
 e

rro
r (

°C
)

Training data distribution
Average absolute model error

Figure 1: Model errors are >10× higher in data-
sparse regions compared to data-dense regions.

10 20 30 50 100 300 600 1200
0

2

4

6

Ab
so

lu
te

 m
od

el
 e

rro
r (

°C
)

Training set size (days)
Figure 2: Model error distribution vs.
training data set size.

0 25 50 75 100 125
0.7

0.8

0.9

1.0

Cu
m

ul
at

iv
e

de
ns

ity

20 days
100 days
600 days
1200 days

Temporal distances (time steps)
Figure 3: CDF of the distances between
model errors for each training set size.

Disturbances Outdoor Air Drybulb Temperature (◦𝐶)
Outdoor Air Relative Humidity (%)
Site Wind Speed (𝑚/𝑠)
Site Total Radiation Rate Per Area (𝑊 /𝑚2)
Zone People Occupant Count (𝑁𝑜.)

Zone State Zone Air Temperature (◦𝐶)
Action Zone Temperature Setpoint (◦𝐶)

Table 1: State and action variables.

random shooting method [17] is often used to solve the optimization
problem in Eq.1, recent work has shown that MPPI is able to provide
better optimization results [4]. To enable the above MBRL-based
HVAC control process, we referred to 𝑀𝐵2𝐶 [4] for the following
three MBRL components.

States. A state is a set of variables that are used as inputs and
outputs of the building dynamics model. Two sets of states are
defined: the disturbances and the zone state. The variables associated
with these states are specified in Table 1. The disturbances comprises
of variables that do not depend on the control action of the HVAC
system, including weather conditions and occupancy. The zone state
variable is the temperature of the controlled thermal zone, which
depends on our control action and is used to calculate the building
system reward.

Actions. The action is the temperature setpoint of the controlled
thermal zone. In our experimental platform, the maximum and mini-
mum temperature setpoints for the HVAC system are 30◦𝐶 and 15◦𝐶,
respectively. Each controlled thermal zone is associated with a heat-
ing setpoint and a cooling setpoint, resulting in an action dimension
of 2 for each zone.

Rewards. In our experimental platform, we adopted the same
reward function as described in [18], represented by Eq. 2. The com-
fort zone is defined by two temperatures, 𝑧 and z, which represent the
upper and lower bounds for the zone temperature, respectively. Here,
𝑧 denotes the upper comfort limit, and z denotes the lower comfort
limit. At each time step 𝑡 , 𝑍𝑡 represents the zone temperature, and
𝐸𝑡 represents the total energy consumption. To balance the relative
importance of comfort and energy consumption, we used a weight
variable 𝑤𝑒 ∈ [0, 1]. This weight variable allows us to adjust the
trade-off between comfort and energy consumption according to the
specific requirements of the system.

𝑟 (𝑠𝑡) = −𝑤𝑒𝐸𝑡 − (1 −𝑤𝑒) (|𝑍𝑡 − 𝑧 |+ + |𝑍𝑡 − z|+) (2)

In Eq. 2, we set 𝑤𝑒 = 0.1 during occupied periods and 𝑤𝑒 = 1
during unoccupied periods. 𝐸𝑡 is approximated by the L-1 norm

of the difference between the zone temperature set point (action)
and the zone temperature at the current time step, i.e. the amount of
heating/cooling provided by the HVAC actuator [6]. The lower and
upper comfort limits z and 𝑧 are 20◦𝐶 and 23.5◦𝐶, respectively, for
the winter and 23◦𝐶 and 26◦𝐶 for the summer.

3 Motivation
To understand the prediction performance of existing state-of-the-art
MBRL methods [4, 17], we performed a set of EnergyPlus simu-
lations [16, 19] in a 463𝑚2 building with five zones [18, 20]. In
this simulation, we utilized an actual 2021 TMY3 weather profile
from Pittsburgh, PA [18]. We employ a single climate for motivation
experiments, while the actual analysis encompasses three climate
zones. To investigate the prediction errors of building dynamics mod-
els, we experimented with the state-of-the-art deep ensemble method
introduced in [4]. Specifically, we examined three key aspects: first,
the relationship between model errors and the distribution of training
data; second, the impact of varying training data sizes; and third, the
temporal distribution of significant model errors.

Experiment results. Figure 1 depicts the relationship between
the distribution of the training data and the prediction error of
the building dynamics model. The model was trained on 120, 000
time steps (3.42 years) of data collected with the default Propor-
tional–Integral–Derivative (PID) controller for 150 epochs and a
learning rate of 1𝑒 − 3 to ensure convergence. After training, we
employed the model to predict the subsequent 3000 time steps and
recorded the prediction errors along with the corresponding zone
state at the prediction’s input, i.e., the starting zone state. To better
analyze the results, we categorized the model errors based on the
zone temperature in their inputs and calculated the average model
errors for each bin.

In Figure 1, we found that the deep ensemble exhibited signifi-
cantly higher errors when predicting in data-sparse regions of the
state space. Notably, the deep ensemble model displayed greater ac-
curacy when the zone state that fell within the temperature range of
15◦𝐶 to 25◦𝐶. Although the average model error is 0.29◦𝐶, the model
error consistently exceeded 1◦𝐶 when the zone state exceeded 32◦𝐶.
The highest model error recorded was 9.36× higher than the average
error and a staggering 15325× higher than the smallest model error.

To understand the substantial prediction errors observed in the
deep ensemble models, we employed Kernel Density Estimation
(KDE) to analyze the density distributions of the collected training
data comprising 10,000 transitions. The blue curve presents the typi-
cal distribution patterns of the training data for the dynamics model

3

in MBRL-based HVAC control. It exhibits two clear modes around
17.5◦𝐶 and 21◦𝐶, representing the predominant temperatures during
night and day. The majority of the transition data clusters around one
or two central modes. The intrinsic bias in the thermal data adversely
affects the prediction accuracy of data-driven dynamics models.

Two Questions Arise: The first question pertains to whether train-
ing models on more historical data can mitigate disastrous model
errors. Unfortunately, the answer is no. We trained a deep ensemble
model on different data sizes, ranging from 10 to 1200 days, and
assessed its absolute error on the subsequent 30 days. The result is
shown in Figure 2. We considered a model error larger than 2°C
as unacceptable, since in the building sensor domain, a 2°C devi-
ation from the true temperature is considered a sensor fault [21].
Despite training with nearly 4 years of data, model errors larger than
2°C persisted, i.e. 2.1% of all predictions deviated more than 2°C
from the ground truth. The epistemic uncertainty from intrinsic bias
in building thermal data significantly impacts accurate predictions,
resulting in sub-optimal actions.

The second question revolves around whether we can ignore
model errors if they occur independently over time, allowing the
thermal system to tolerate short periods of controller glitches. Unfor-
tunately, the answer is also no. To answer this question, we employed
the deep ensemble model to make predictions with each of the 3000
time steps (one year) of data in the previous experiments, recorded
the model errors, and flagged the model errors that exceed 2◦𝐶.
Then, we went through all model errors in chronological order and
recorded the number of time steps until we encounter every other
flagged model error, i.e. the temporal distances between adjacent
flags. Finally, we plotted the cumulative density function of the dis-
tances. To show how the trend changes with the size of the training
data set, we conducted the above experiment four times using the
same deep ensemble model trained on datasets of different sizes,
ranging from 20 to 1200 days. The results are shown in Figure 3.
Our analysis reveals that a significant majority (ranging from 68%
to 89%) of the distances are 0, which means that the sizeable model
errors are often consecutive. In other words, the majority of high
model errors occur in clusters. If these errors are ignored, the thermal
system potentially faces hours of controller dysfunction.

Our Key Idea. Based on the above observations, our main goal
is to mitigate the adverse effects of high model error caused by
distribution bias. Rather than attempting to refine the model or the
training process to reduce the error, which we have shown might
be unfeasible, we designed a procedure that identifies and alerts the
controller when the model error will be high in the current time step.
In essence, our system predicts the uncertainty about the model’s
prediction using its training data and the current input. Once a high
error state-action pair is flagged, we either discard the prediction and
opt for more confident alternatives, or in cases where no prediction
is highly confident, allow the building’s default controller to override
the control action, compensating for the lack of data in that region
of the state space.

4 The Design of CLUE
In this section, we describe the design of CLUE, including problem
formulation, modeling system dynamics with the Gaussian process,
and confidence-based MPPI controller.

4.1 Overview
Figure 4 depicts the overview of CLUE. At a high level, CLUE com-
prises two major components: a building system dynamics model
and an MPPI-based controller. Our building dynamics model is a
Gaussian process (GP) model which takes the current state of the
building HVAC system as an input, and outputs the next state of the
building HVAC system with a confidence interval. The prediction
and the confidence interval are then used by the confidence-based
controller to choose the best action.

The workflow of CLUE is summarized as follows. Initially, the
system performs meta kernel learning (Section 4.3) to compute the
GP prior without any previous knowledge about the target building
B. Meta-kernel learning uses reference data, i.e. any data collected
from other buildings or via simulations, to learn an initialization
of the GP kernel. Once the historical data of the target building
is available, the system fits a GP using data solely from the target
building while incorporating the learned GP prior. The result is the
final building dynamics model. CLUE then optimizes the uncertainty
value threshold 𝜖, which is stored in the MPPI algorithm.

Upon deployment, the system initiates the confidence-based con-
trol procedure. At each control step, our system generates MBRL
prediction trajectories using the GP model. Any trajectory where the
uncertainty of the first time step exceeds the threshold 𝜖 is discarded.
If all trajectories are discarded, the system sends the default con-
troller action to the actuator. Otherwise, the remaining trajectories
are utilized by an MPPI to compute the optimal action sequence 𝑎(·).
The first action from this sequence is then sent to the actuator.

Lastly, the system awaits a single time step interval (e.g., 15
minutes in our case), observes a new state, and appends the corre-
sponding tuple to the historical dataset DB before starting a new
planning cycle.

4.2 Modeling Building Dynamics with GP
We model the building dynamics using GP, and use the variance of
each prediction as the uncertainty value, i.e. higher variance indicates
higher uncertainty. We concatenate the environment state (outdoor
air temperature, humidity, occupancy, etc.) and the zone states (zone
air temperature) together to form 𝑠𝑡 ∈ S, then concatenate 𝑠𝑡 with
the action 𝑎𝑡 ∈ A (heating and cooling setpoints) to get the input
variable. We will denote the input variable as 𝑥 ∈ X = S × A for
simplicity. The output variable is the zone state at the next time
step 𝑠𝑡+1. To make the notations consistent, we denote target output
variable for 𝑥𝑖 to be 𝑦𝑖 . We further define our historical data set as
D = (𝑋,𝑌) = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1.

Modeling with GP involves a two-stage process. It starts from a
pool of candidate functions (GP prior) and computes beliefs condi-
tioned on training data (GP posterior). We will introduce both stages
in the following.

First, we choose a function that, intuitively, quantifies the sim-
ilarity between two inputs, i.e. 𝑘 : X × X → R. This function is
called the GP kernel. The idea is that buildings in similar states
that are taking similar actions should transition to a similar state.
Thus, if 𝑘 (𝑥1, 𝑥3) > 𝑘 (𝑥2, 𝑥3), then 𝑦1 should be more indicative
about 𝑦3 than 𝑦2 when extrapolating on 𝑥3. Notably, each variable in
our inputs contributes differently to their similarity to other inputs,
depending on their level of influence according to the unknown dy-
namics function. The kernel function addresses this difference using

4

Reference building data Learned kernel
Final building

dynamics model

Meta learning Finetuning

Confidence-based Controller

Fallback mechanism

Trajectory
reward

Trajectory
confidence Trajectory prediction

Action decision

Actuator

Building Dynamics Model - Gaussian Process w/ meta kernel learning

Controller - Model Predictive Path Integral w/ confidence

Figure 4: Overview of the proposed CLUE system.

adjustable parameters, dubbed hyperparameters. CLUE adopts the
Radial Basis Function (RBF) kernel represented by Eq. 3. The RBF
kernel is known for its expressive nature and has previously been
used to model building thermal dynamics [12]. The hyperparameters
are 𝜃 : {𝜃scale,Θ}, where 𝜃𝑠𝑐𝑎𝑙𝑒 represents a scalar value, and Θ is an
8× 8 matrix. Overall, the kernel parameters involve a total of 65 real
numbers. The selection of these parameters is crucial as their values
significantly impact both the modeling accuracy and the uncertainty
estimation accuracy.

The second stage involves fitting data and making predictions.
CLUE uses the exact regression technique, where we first compute
the covariance matrix 𝐾 := 𝑘 (𝑋,𝑋), and then calculate the GP
posterior by Eq. 4 and Eq. 5, where 𝐼 is the identity matrix and
𝜎2𝑛 is the noise variance (default to be 0) to account for aleatoric
uncertainty. From this posterior, the prediction of 𝑦∗ at 𝑥∗ follows a
Gaussian distribution as per Eq. 6.

𝑘 (𝑥, 𝑥 ′) = 𝜃scale exp
(
−1
2
(𝑥 − 𝑥 ′)⊤Θ−2 (𝑥 − 𝑥 ′)

)
(3)

𝑚post (𝑥) =𝑚(𝑥) + 𝑘 (𝑥, 𝑋) (𝐾 + 𝜎2𝑛𝐼)−1 (𝑦 −𝑚(𝑋)) (4)

𝑘post (𝑥, 𝑥 ′) = 𝑘 (𝑥, 𝑥 ′) − 𝑘 (𝑥, 𝑋) (𝐾 + 𝜎2𝑛𝐼)−1𝑘 (𝑋, 𝑥 ′) (5)

GP(𝑥∗) = N(𝑚post (𝑥∗), 𝑘post (𝑥∗, 𝑥∗)) (6)

The prediction mean𝑚post (𝑥∗) represents the most likely model
outcome, while the variance 𝑘post (𝑥∗, 𝑥∗) indicates the level of un-
certainty associated with the model outcome given data D and input
𝑥∗. The variance of prediction 𝑦∗ is higher if 𝑥∗ is in the data-scarce
region of the input space X than if 𝑥∗ is in the data-dense region.
Therefore, we use variance as the indicator of epistemic uncertainty.

4.3 Meta Kernel Learning
To effectively model the building dynamics with GP, we optimize the
initialization of the kernel parameters using data from a diverse set
of reference buildings. To achieve this goal, we develop a new meta
kernel learning method that combines two techniques, i.e., meta
learning [22] and kernel learning [15].

Given a set of training data D : {𝑋,𝑌 }, kernel learning [15]
automatically optimizes the kernel parameters using gradient descent.
It defines the loss function as the difference between the GP model’s
prediction and the ground truth, L(GP𝜃𝑘) = 𝑀𝑆𝐸 (GP𝜃𝑘 (𝑋), 𝑌). It
calculates the gradient of the loss function with respect to the kernel
parameters, ∇𝜃𝑘L(GP𝜃𝑘), and updates the kernel parameters with
the gradient. This process is repeated for a number of iterations to
obtain a set of kernel parameters with a low model error.

Meta learning [22] trains a parameterized agent on multiple di-
verse tasks, enabling the agent to learn a suitable initialization of
parameters from previously trained tasks. As a result, the agent can
swiftly adapt to new tasks. Formally, instead of optimizing the model
parameters according to 𝜃∗

𝑘
= argmin𝜃𝑘 L(GP𝜃𝑘), meta learning op-

timizes the parameters according to 𝜃∗
𝑘
= argmin𝜃𝑘

∑
LT𝑖
(GP𝜃𝑘),

where T𝑖 is a task. It minimizes the sum of model error across a
range of different tasks by accumulating the gradients across tasks,
which we will introduce in the following.

In our meta kernel learning, we optimize the hyperparameters
of a GP kernel, denoted as 𝜃𝑘 , using kernel learning. Rather than
referring to MDPs as tasks, we consider modeling a dataset from a
building over a specific period as a task. For instance, minimizing
the modeling loss on the data from building A in Pittsburgh between
May and August can be regarded as a task. The loss of the model
on a task is defined in Eq. 7, which represents the model error of
GP when using a kernel with hyperparameters 𝜃𝑘 on the mentioned
dataset.

LT𝑖
(GP𝜃𝑘) = 𝑀𝑆𝐸 (GP𝜃𝑘 (𝑋T𝑖

), 𝑌T𝑖
) (7)

𝜃∗
𝑘
= argmin

𝜃

𝑛∑︁
𝑖=1

LT𝑖
(GP𝜃𝑘) |T𝑖∼𝑝 (T) (8)

The objective of meta kernel learning is to minimize the sum of
model errors across all tasks. We denote the set of tasks as 𝑝 (T). The
objective function is defined in Eq. 8.

5

Algorithm 1: Meta Kernel Learning
Input: 𝑝 (T): distribution over all building data
Parameter :{𝛼, 𝛽} step size hyperparameters

1 Randomly initialize 𝜃𝑘
2 while not converged do
3 Sample batch of building data {T1, · · · , T𝑖 } ∼ 𝑝 (T)
4 for all T𝑖 do
5 GP← GP Fit(𝑋T𝑖

, 𝑌T𝑖
)

6 𝜃 ′
𝑘
← 𝜃𝑘 − 𝛼∇𝜃𝑘LT𝑖

(GP𝜃𝑘)
7 𝜃𝑘 ← 𝜃𝑘 − 𝛽∇𝜃

∑
LT𝑖
(GP𝜃 ′

𝑘
)

We present our design of the meta kernel learning procedure in
algorithm 1. The kernel parameter is optimized using gradients accu-
mulated across many tasks, and therefore improving the kernel while
avoiding overfit to a single task. For the step size hyperparameters,
we chose 𝛼 = 𝛽 = 1𝑒 − 3. This selection of step size leads to a
relatively slower training process. However, in our experiments, we
specifically chose a small step size to ensure convergence. The result
of meta kernel learning is a set of kernel parameters that serve as the
initialization of the kernel for the GP building dynamics model to
be finetuned on the target building data. Once meta kernel learning
is applied, we can obtain a building-specific kernel by fine-tuning
the trained kernel using a minimal amount of data from the target
building through traditional kernel learning.

4.4 Confidence-based Control
CLUE uses online planning with MPPI to select actions. Given the
building state 𝑠𝑡 at time 𝑡 , the prediction horizon 𝐻 , and an action
sequence 𝑎𝑡 :𝑡+𝐻 = {𝑎𝑡 , ..., 𝑎𝑡+𝐻 }, our GP-based building dynamics
model GP(𝑥∗) makes predictions 𝑠𝑡 :𝑡+𝐻 . At each time step 𝑡 , the
MPPI controller applies the first action 𝑎𝑡 of the optimized action
sequence. Thus, it is critical that the first prediction of the trajectories
has low model error. The uncertainty estimation does not directly
translate to the expected model error. We translate the model error
threshold to an uncertainty value threshold by testing the model
on historical data. Then, CLUE identifies and filters out prediction
trajectories whose uncertainty value exceeds the threshold.

4.4.1 Uncertainty Threshold Translation. Let the uncertainty
value provided by the GP dynamics model at input 𝑥 be 𝜎 (𝑥), model
error threshold be 𝑒∗ (measured in absolute error in Celsius degrees),
and flagging threshold be 𝜖 ∈ R+. If 𝜎 (𝑥) > 𝜖, the state-action
pair is flagged to have a high model error. Given an 𝑒∗ specified by
the engineers, the ideal translator maximizes the number of model
errors>𝑒∗ flagged while minimizing the flags that have low model
errors, i.e., the translator maximizes true positives and true negatives.

To find the appropriate threshold 𝜖, we use an offline procedure
that optimizes 𝜖 from historical data. Given a set of historical data of
the target building D : {𝑋,𝑌 }, we employ the current model GP to
make a prediction on every input 𝑥𝑖 ∈ 𝑋 in D and generate prediction
results (®𝜇, ®𝜎) = GP(𝑋), where ®𝜇 is the predicted building state and
®𝜎 is the uncertainty value. We can then calculate ®𝑒 = |𝑌 − ®𝜇 |, which
is the absolute model error inferred by testing the current model
with the historical data. For all predictions {(𝜇, 𝜎)}𝑛 , we solve the
following optimization problem:

minimize: count(|𝑦𝑖 − 𝜇𝑖 | < 𝑒∗) − count(|𝑦𝑖 − 𝜇𝑖 | > 𝑒∗)
s.t. 𝜎𝑖 > 𝜖

(9)

By maximizing true positives and true negatives, CLUE finds the
appropriate 𝜖 to be used for future predictions using the current
model 𝐺𝑃 . This method works with any model error threshold 𝑒∗ ∈
R+ specified by the engineers. CLUE applies this process offline to
get the optimal flagging threshold, which is used in the confidence-
aware MPPI control process.

4.4.2 Confidence-Aware MPPI. At each planning cycle, the
MPPI controller computes a number of trajectories. CLUE checks
the uncertainty value of the first time step of each trajectory and flags
the trajectories that are expected to exceed the given model error
threshold using the flagging threshold computed by the uncertainty
threshold translator. Then, CLUE discards all trajectories that are
flagged. This excludes high uncertainty thresholds from being used
for action selection.

After filtering out trajectories according to their uncertainties,
the confidence-based MPPI selects an optimal trajectory from the
remaining trajectories. Although all remaining trajectories have low
uncertainty at the first time step, the uncertainty values at the future
time steps should also be considered, since they are related to the
uncertainty of the predicted future rewards of the trajectories. CLUE
addresses this by incorporating uncertainty into the optimization
objective function, Eq. 10, where 𝜆 is a factor used to balance the
magnitudes of uncertainty and reward. In other words, Eq. 10 de-
termines the action sequence of the trajectory that maximizes the
sum of discounted rewards while minimizing the sum of discounted
uncertainty values. The design rationale behind Eq. 10 is that since
the controller computes a roll-out trajectory in a bootstrap manner,
i.e., for every time step in the prediction horizon, the impact of the
model accuracy diminishes. In this design, the uncertainty value
is discounted at the discount rate 𝛾 to take account of the relative
importance of each uncertainty value. This modified objective func-
tion enables the controller to simultaneously optimize for both high
reward and low uncertainty.

𝑎(·)∗ = argmax
𝑎 (·)

𝐻∑︁
𝑡=1

𝛾𝑡 (𝑟 (𝑥𝑡) − 𝜆𝜎 (𝑥𝑡)) (10)

𝑎new = 𝑎prev +
∑𝐾
𝑘=1 𝛿𝑎𝑘 exp(

1
𝜂

∑𝐻
𝑡=1 𝛾

𝑡 (𝑟 (𝑥𝑡) − 𝜆𝜎 (𝑥𝑡)))∑𝐾
𝑘=1 exp(

1
𝜂

∑𝐻
𝑡=1 𝛾

𝑡 (𝑟 (𝑥𝑡) − 𝜆𝜎 (𝑥𝑡)))
(11)

Implementing the designed optimization objective function into
MPPI controllers is a straightforward and widely applicable process.
To illustrate, we provided an example using the MPPI controller em-
ployed in recent research on HVAC control [4]. MPPI approximates
the optimal action sequence by assessing the expected rewards of
random trajectories and calculating the weighted sum of their action
sequences using exponential weighting with respect to the cumu-
lative discounted rewards generated by the action sequences [23].
A generic implementation of MPPI for HVAC control would use
Eq. 2 for reward, such that 𝑅 =

∑𝐻
𝑡=1 𝛾

𝑡𝑟 (𝑠𝑡), where 𝐻 is the pre-
diction horizon length. In order to implement our proposed method,
we modify the reward function to match the objective function in
Eq. 10. The result is Eq. 11, where 𝑎 is an action sequence, 𝐾 is

6

the number of trajectories, 𝛿𝑎𝑘 is the action perturbation, and 𝜂 is a
hyperparameter. Eq. 11 shows how the weighted exponential sum of
action sequences is now calculated with respect to the discounted
sum of the system rewards and their confidence. In a similar manner,
other MBRL controllers can implement our design by replacing the
reward evaluation function.

4.4.3 Fallback Mechanism. When all trajectories exhibit high
uncertainty, CLUE falls back to using the default controller as a
safe and dependable alternative. Current HVAC systems’ default
controller is rule-based control, which mostly provides conservative
and safe actions.

5 Evaluation
We conducted two sets of experiments to evaluate CLUE. First, we
tested the modeling accuracy of GP with meta kernel learning and the
uncertainty prediction accuracy of the fallback mechanism. Second,
we deployed CLUE in the simulated environments and compared its
performance with the state-of-the-art solutions.

5.1 Experiment Setting
5.1.1 Platform Setup. We used EnergyPlus [16] for high-fidelity
building simulation, PyTorch [24] as the deep learning library, GPy-
Torch [25] for GPU-accelerated GP kernel learning, and Sinergym
[18] as the virtual testbed that facilitates interaction with EnergyPlus
in Python. Sinergym [18] sends the action chosen by CLUE to the
EnergyPlus simulation session and sends the state observations back
to CLUE. All software used for our experiment is open source.

5.1.2 Implementation details. Throughout our experiments, we
used consistent experiment hyperparameters. We used epochs=150,
learning_rate=1e-3, and weight_decay=1e-5 for DE models, itera-
tion=800 and learning_rate=1e-2 for GP kernel learning, and itera-
tion=200 and learning_rate=1e-2 for GP kernel finetuning. We used
MSE as the loss criterion and Adam as the optimizer for all training.
For meta kernel learning, the GP model trains on 35, 040 time steps (1
year) of data from each reference building. For the MPPI controller,
we used the optimal hyperparameter configuration tested in [4], i.e.
sample_number=1000 and horizon=20. For confidence-based MPPI,
we used 𝜆 = 1𝑒 − 2.

5.1.3 Environment selection. We conducted our simulation with
a 463𝑚2 building with five zones [18] in three climate-distinct cities
from January 1st to January 31st and July 1st to July 31st. To test
CLUE’s generalizability, we carefully chose three cities in the United
States—Pittsburgh, Tucson, and New York—as our experiment envi-
ronments. Each city represents a distinct climate type: Pittsburgh has
a continental climate (ASHRAE 4A), Tucson has a hot desert cli-
mate (ASHRAE 2B), and New York has a humid continental climate
(ASHRAE 4A) [26]. Actual 2021 TMY3 weather data for those
cities are used [18]. This deliberate diversity in climate conditions
allows our simulations to yield comprehensive insights applicable
across various regions and climates.

5.1.4 Performance Metrics. We use two different sets of perfor-
mance metrics to evaluate the uncertainty estimation accuracy and
building control efficiency respectively.

1) Metrics for the uncertainty estimation:

Jan(P) Jan(T) Jan(N) July(P) July(T) July(N) Avg.0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

M
ea

n
ab

so
lu

te
 e

rro
r (

°C
)

GP
DE
GP-M (ours)

Figure 5: Model accuracy results.

• Accuracy: the sum of true positive (TP) and true negative
(TN) results divided by the total number of results.
• Precision: the number of TP results divided by the number of

all positive results.
• Recall: the number of TP results divided by the number of all

samples that should have been identified as positive.
Note that we did not use the 𝐹1 score metric due to its equal

weighting of precision and recall [27], which does not align with our
control system’s objective. Instead, we directly logged the precision
and recall values for informative data representation.

2) Metrics for building control efficiency:
• Cumulative reward: the weighted sum of the building system

rewards calculated according to Eq. 2.
• Violation rate: the ratio of time steps where zone temperature

violates comfort constraints to the total number of time steps.
• Energy consumption: total energy consumption in kWh.

5.1.5 Baselines. In terms of uncertainty estimation accuracy, we
compared the performance of our method with the following base-
lines:
• Deep Ensemble [4]: an ensemble of five neural networks.

Since uncertainty estimation is not adopted in [4], we use
the uncertainty measurement method from [11], where the
level of uncertainty is measured as the variance of a predic-
tion Gaussian distribution: 𝜎2∗ (𝑥) = 𝑀−1

∑
𝑚 𝜇2

𝜃𝑚
(𝑥) − 𝜇2∗ (𝑥),

where 𝑀 = 5 is the number of models, 𝜇𝜃𝑚 (𝑥) is the model
𝑚’s prediction, and 𝜇∗ (𝑥) = 𝑀−1

∑
𝑚 𝜇𝜃𝑚 (𝑥) is the mean of

the predictions of all models.
• GP: GP method with kernel learning and identical uncertainty

estimation as our approach, representing the generic approach
for building thermal dynamics regression.

In terms of building control efficiency, we compared the perfor-
mance of our proposed system with the following baselines:
• Rule-based: the default controller of the environment.
• DE-MBRL [4]: MBRL with deep ensemble and MPPI.
• CLUE w/o CB: CLUE without confidence-based control.

5.2 Modeling and Uncertainty Estimation
5.2.1 Modeling Accuracy. We compared our solution (GP with
meta kernel learning, presented as GP-M in the figure) with the
other two baseline methods, i.e., deep ensemble (DE) and GP. The
results are shown in Figure 5. The DE model is trained on 2, 000
time steps (20.83 days) of data from the target building. The GP
model is trained and fitted on the same data as above. The GP-M

7

model first employed meta kernel learning, then finetuned and fitted
to the same data as the DE model. We found that, in terms of the
average of all environments, the mean absolute model error of GP-M
is 20.7% less than DE and 85.1% less than GP. GP-M outperformed
GP in all environments and outperformed DE in five out of six
environments. The result shows that meta kernel learning was able
to effectively learn a suitable initialization for the kernel parameters,
which significantly improved GP’s modeling performance.

5.2.2 Uncertainty Estimation Accuracy. In the following experi-
ment, we tested and compared the uncertainty estimation accuracy of
GP-M and the baselines. We added our fallback mechanism (Section
4.4.3) to all three models and measured their abilities to accurately
flag model errors larger than 1◦𝐶. We used 1◦𝐶 as a stricter thresh-
old compared to the sensor fault (2◦𝐶)[21]. Then, we measured the
accuracy, precision, and recall of them in the subsequent 30 days of
the training set. Furthermore, to test the stability of each method, we
trained new models and ran the same experiment five times. We then
calculated the mean and the standard deviations of each result. The
results are summarized in Table 2, where the best performances for
each metric in each environment are in bold.

We found that our method consistently performed better than
both baselines in terms of overall accuracy. Compared to GP, our
method had a higher recall and lower precision, i.e. GP-M correctly
flagged predominant portions of the large model errors, but also
flagged some small model errors. This shows that GP-M is more
conservative than GP, i.e. our method rather incorrectly flags a minor
model error than missing a potential model error over the threshold.

In terms of stability, both vanilla GP and GP-M showed negligi-
ble instability (< 0.5% in all metrics). DE showed high instability
across experiment runs, with a standard deviation of as high as 12%
for recall. We attribute the high instability of the Deep Ensemble
method to the randomness of the parameter initialization and the
stochasticity of the training process of the neural network models.
In comparison, GP-based methods are significantly more resistant to
the said randomness.

5.2.3 Model Convergence. We conducted experiments to test the
time step of convergence for CLUE and its DE-MBRL counterpart in
terms of cumulative reward. The result is shown in Figure 6. In this
experiment, DE-MBRL is trained offline using different amounts
of data from the target building. Then the model freezes, and is
used to control the 5-zone building in Pittsburgh in January. CLUE
first applied meta kernel learning, then finetuned it using different
amounts of data from the target building. The GP model is then fitted
to 700 time steps of the target building data (the same data size as
in [13]) to ensure effective modeling and computation efficiency. For
the model error threshold 𝑒∗ settings, we used exhaustive search to
find the optimal settings between 0.5◦𝐶 to 3◦𝐶.

DE-MBRL took 50 days of offline training data to surpass the
default controller and another 250 days of offline training data to
reach its peak performance. CLUE’s performance converged at 7
days of data, where further training did not improve its control
performance. With this insight in mind, we use 7 days of data for
CLUE for the remainder of the experiments.

In the following experiments, the DE-MBRL was trained on
120, 000 (3.42 years) time steps of data gathered from the target
building using the default PID controller. CLUE employed the same

10 20 30 50 100 300 600 1200
Days

130

125

120

115

110

105

100

Re
wa

rd

Default controller
DE-MBRL
CLUE

Figure 6: Data efficiency results.

Pittsburgh Tucson New York Average0.00
0.05
0.10
0.15
0.20
0.25
0.30

Vi
ol

at
io

n
ra

te
 (%

)

Rule-based
DE-MBRL
CLUE w/o CB
CLUE

Figure 7: Comfort violation rate results.

Pittsburgh Tucson New York Average0

200

400

600

800

1000

1200

Po
we

r c
on

su
m

pt
io

n
(k

W
h) Rule-based

DE-MBRL
CLUE w/o CB
CLUE

Figure 8: Energy consumption results.

training procedure as above. The model error threshold is set to
0.5◦𝐶. Then, we use CLUE and the baseline methods to control
the building’s HVAC system and observed the thermal comfort and
energy-saving performances, as shown in the following subsections.

5.3 Building Control
In terms of building control, we tested CLUE along with the base-
lines in the simulated environments of a 463𝑚2 building with five
zones [18] in three climate-distinct cities.

5.3.1 Thermal Comfort. We compared the violation rates of
CLUE and the baselines in Figure 7. We found that CLUE con-
sistently outperforms the baseline methods in terms of violation
rates. Although the GP-M dynamics model used in CLUE has higher
model error compared with DE as shown in Figure 5, CLUE still
achieved a lower violation rate compared with its DE-MBRL coun-
terpart, while CLUE w/o CB performed worse than DE-MBRL, as
expected. This shows that CLUE is able to produce high-quality con-
trol actions even with an inaccurate dynamics model, which results
in its excellent data efficiency.

8

Location Time
Deep Ensemble [11] GP GP-M (ours)

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

Pittsburgh, PA
January .796±.00 .521±.01 .740±.01 .877±.00 .803±.00 .958±.00 .884±.00 .768±.00 .677±.00

July .831±.01 .851±.09 .160±.10 .840±.00 .809±.00 .763±.00 .961±.00 .056±.00 .999±.00

Tucson, AZ
January .736±.01 .439±.08 .693±.12 .847±.00 .697±.00 .844±.00 .932±.00 .341±.00 .694±.00

July .650±.00 .489±.00 .827±.00 .844±.00 .854±.00 .860±.00 .947±.00 .036±.00 .999±.00

New York, NY
January .830±.00 .403±.02 .816±.00 .855±.00 .883±.00 .728±.00 .965±.00 .299±.00 .900±.00

July .679±.00 .373±.01 .812±.01 .797±.00 .934±.00 .718±.00 .953±.00 .205±.00 .947±.00
Table 2: Uncertainty estimation experiment results.

6:00 11:00 16:00 21:00 2:00
16

18

20

22

Te
m

pe
ra

tu
re

 (
C)

CLUE w/o CB

6:00 11:00 16:00 21:00 2:00
16

18

20

22

Te
m

pe
ra

tu
re

 (
C)

CLUE

0

1

Oc
cu

pa
nc

y
Fl

ag

0

1

Oc
cu

pa
nc

y
Fl

ag

Heating setpoint
Zone temperature

Comfort threshold
Comfort violation

Fallback active
Occupancy flag

Figure 9: Analysis of the control performance gain of CLUE.

5.3.2 Energy Consumption. We compared the energy consump-
tion of CLUE and the baselines in Figure 8. Overall, we found
that CLUE consumes slightly more energy compared with its non-
confidence-based counterparts. This is attributed to the operation of
fallback mechanism, which consumes the same amount of energy
as the rule-based controller during the time that the fallback is ac-
tive. However, the energy consumption level of CLUE is still in-line
with other MBRL methods. Notably, the low violation rate of CLUE
makes it offer more time steps of comfort per unit of energy com-
pared with its DE counterpart. This can make CLUE more preferable
for the applications that prioritize comfort.

5.3.3 Effect of confidence-based control. To observe the ef-
fectiveness of the fallback mechanism, we compared CLUE with
a version without the fallback mechanism, i.e., CLUE w/o CB, in
Figure 7 and Figure 8. We found that while CLUE w/o CB performs
better than DE-MBRL in two out of three times depending on if
the model error for CLUE w/o CB is lower, CLUE was consistently
superior to all baselines. This shows that the fallback mechanism
ensures a high level of control performance even with an inaccurate
model since our method can accurately predict its own model error.

5.3.4 Analysis of the control performance gain of CLUE. To
investigate the reasons behind the building control performance gain
of CLUE compared with the baseline method, we plotted the data
from one day of our simulation experiment for CLUE and CLUE

w/o CB in Figure 9. The simulation scenario was in January, so
only the heating temperature setpoint was displayed. Out of the
85 time steps shown in the figure, 26 time steps had the fallback
mechanism activated, i.e. the control action was overridden by the
default controller about 30% of the times. During a one-day period, an
ideal controller is expected to keep the zone temperature within the
comfort range during the occupied times and let the zone naturally
cool down to the environment temperature during the unoccupied
times to save energy. There are usually two origins of performance
gain for MBRL approaches [6]. First, the MBRL controllers learn
to pre-heat the room to desired temperatures before the room is
occupied to get a lower violation rate. Second, the MBRL approaches
cool and re-heat the room repeatedly, keeping the temperature within
the comfort range while saving energy during the time periods when
the heating is turned off.

We found that the CLUE w/o CB made a mistake mid-way be-
tween 16 : 00 to 21 : 00. It falsely believed that the zone temperature
would take longer to cool down and would turn the heating off
prematurely. This usually happens when the dynamics model over-
estimates the room’s thermal capacity. The same mistake happened
to the DE-MBRL controller. After observing that the temperature
has plummeted, it underestimated the amount of heating to reheat
the zone and eventually caused 135 minutes of comfort violation.
Our method, on the other hand, detected high model uncertainty and
overrode 2 time steps of control action with the default controller
between 16 : 00 to 21 : 00. This successfully kept the zone tempera-
ture within the comfort range and also within the data distribution,
allowing the controller to correctly predict the amount of heating
needed for the rest of the occupied times. As a result, the fallback
mechanism prevented 135 minutes of comfort violation.

6 Related Work
Model-Free RL for HVAC. MFRL systems train a deep policy
network for HVAC control using RL learning methods such as deep
Q-learning [28] or actor-critic method [29]. They do not rely on a
system dynamics model, but instead, a policy network that takes the
current state and predicts the optimal action through interactions
with the environment. Zhang et al. [29] implemented and deployed a
DRL-based control method for radiant heating systems in a real-life
office building. Ding et al. [28] proposed to use a deep RL model to
control all building’s subsystems, including HVAC, lighting, blind
and window systems, using a tailored reward function. However,
MFRL methods are data-hungry.
Model-Based RL for HVAC. Collecting large scale real-world data
is often difficult [30]. To improve sample efficiency, researchers have

9

adopted MBRL for HVAC control [4, 17]. Zhang et al. [17] intro-
duced an MBRL approach using a neural network to learn system
dynamics and a random shooting method MPC for building control
based on trajectory predictions. Chen et al. [6] employed offline
training using expert demonstrations to reduce the data requirements.
Ding et al. [4] expanded MBRL’s control capabilities from a single
zone to multi-zone buildings using a neural network as the dynamics
model and a more efficient MPPI controller, achieving convergence
with 183 days of training data. However, these building models lack
uncertainty awareness and require hundreds of days of training data
to reach satisfactory performance.
Safe RL. Safe RL has emerged as a critical research area to ensure
the practical deployment of RL agents in real-world environments
without causing harm [31]. One prominent method proposed by [32]
is Constrained Policy Optimization, which adds safety constraints to
the RL problem, restricting the agent from taking actions that vio-
late safety requirements. However, selecting appropriate constraint
formulations that accurately capture safety requirements remains
challenging. Similarly, Model-Based Safe RL, as proposed by [33],
employs learned environment models to simulate potential outcomes,
enabling safer exploration. However, it may yield suboptimal real-
world decisions due to potential model inaccuracies.
Safe RL for HVAC. Real-world exploration in a building can be
hazardous when the outcomes of actions are unknown. Some stud-
ies [5, 29] propose using simulators to train RL agents and then
deploying them in the building. However, safety is not guaranteed as
mismatches between simulator data and real-world dynamics may
make actions deemed "safe" in the simulator "unsafe" in reality.
Another alternative involves utilizing batch RL methods [34, 35],
which enable learning from historical data and enhancing the ex-
isting policy without requiring interactions with real buildings or
simulators during training. However, the control performance of RL
agents depends on data quantity and quality, making it challenging
to ensure optimal outcomes.

7 Conclusion
This paper presents CLUE, a safe MBRL approach for HVAC con-
trol, excelling in high control performance despite training a dy-
namics model with limited data. CLUE leverages GP to quantify
epistemic uncertainty caused by data scarcity. A novel meta-kernel
learning technique is developed to effectively set GP kernel hyperpa-
rameters. GP-based uncertainty is integrated into a confidence-aware
HVAC control process. Extensive evaluations demonstrate a 12.07%
reduction in comfort violations and comparable energy-saving per-
formance with just a seven-day historical dataset.

Acknowledgments
This work was supported in part by the UC National Laboratory
Fees Research Program grant #69763. Any opinions, findings, and
conclusions expressed in this material are those of the authors and
do not necessarily reflect the views of the funding agencies.

References
[1] T. M. Moerland, J. Broekens, A. Plaat, C. M. Jonker et al., “Model-based rein-

forcement learning: A survey,” Foundations and Trends® in Machine Learning,
vol. 16, no. 1, pp. 1–118, 2023.

[2] D. A. Winkler, A. Yadav, C. Chitu, and A. E. Cerpa, “Office: Optimization frame-
work for improved comfort & efficiency,” in 19th ACM/IEEE IPSN, 2020.

[3] C. Agbi, Z. Song, and B. Krogh, “Parameter identifiability for multi-zone building
models,” in 2012 IEEE 51st IEEE CDC. IEEE, 2012, pp. 6951–6956.

[4] X. Ding, W. Du, and A. E. Cerpa, “Mb2c: Model-based deep reinforcement
learning for multi-zone building control,” in ACM BuildSys, 2020, pp. 50–59.

[5] Z. Zhang and K. P. Lam, “Practical implementation and evaluation of deep re-
inforcement learning control for a radiant heating system,” in ACM BuildSys,
2018.

[6] B. Chen, Z. Cai, and M. Bergés, “Gnu-rl: A precocial reinforcement learning
solution for building hvac control using a differentiable mpc policy,” in ACM
BuildSys, 2019, pp. 316–325.

[7] W.-J. Baek, C. Ledermann, and T. Kröger, “Uncertainty estimation for safe human-
robot collaboration using conservation measures,” in Proceedings of IAS-17, 2023.

[8] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforcement learning
in a handful of trials using probabilistic dynamics models,” NeurIPS, 2018.

[9] J. Vermorel and M. Mohri, “Multi-armed bandit algorithms and empirical evalua-
tion,” in European conference on machine learning. Springer, 2005, pp. 437–448.

[10] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. Xi Chen, Y. Duan, J. Schulman,
F. DeTurck, and P. Abbeel, “# exploration: A study of count-based exploration for
deep reinforcement learning,” NeurIPS, vol. 30, 2017.

[11] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive
uncertainty estimation using deep ensembles,” NeurIPS, vol. 30, 2017.

[12] F. Massa Gray and M. Schmidt, “Thermal building modelling using gaussian
processes,” Energy and Buildings, vol. 119, pp. 119–128, 2016.

[13] L. Goliatt, P. Capriles, and G. R. Duarte, “Modeling heating and cooling loads in
buildings using gaussian processes,” in 2018 IEEE CEC. IEEE, 2018, pp. 1–6.

[14] T. X. Nghiem and C. N. Jones, “Data-driven demand response modeling and
control of buildings with gaussian processes,” in ACC. IEEE, 2017.

[15] D. Duvenaud, “Automatic model construction with gaussian processes,” Ph.D.
dissertation, University of Cambridge, 2014.

[16] DoE, “Energyplus input output reference,” US Department of Energy, 2010.
[17] C. Zhang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna, “Building hvac

scheduling using reinforcement learning via neural network based model approxi-
mation,” in ACM BuildSys, 2019, pp. 287–296.

[18] J. Jiménez-Raboso, A. Campoy-Nieves, A. Manjavacas-Lucas, J. Gómez-Romero,
and M. Molina-Solana, “Sinergym: a building simulation and control framework
for training reinforcement learning agents,” in ACM BuildSys, 2021, pp. 319–323.

[19] H. Rajabi, Z. Hu, X. Ding, S. Pan, W. Du, and A. Cerpa, “Modes: Multi-sensor
occupancy data-driven estimation system for smart buildings,” in ACM e-Energy,
2022.

[20] H. Rajabi, X. Ding, W. Du, and A. Cerpa, “Todos: Thermal sensor data-driven
occupancy estimation system for smart buildings,” in ACM BuildSys, 2023.

[21] D. Kumar, X. Ding, W. Du, and A. Cerpa, “Building sensor fault detection and
diagnostic system,” in ACM BuildSys, 2021, pp. 357–360.

[22] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adapta-
tion of deep networks,” in ICML. PMLR, 2017, pp. 1126–1135.

[23] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Aggressive
driving with model predictive path integral control,” in 2016 IEEE ICRA, 2016.

[24] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance
deep learning library,” NeurIPS, vol. 32, 2019.

[25] J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson, “Gpy-
torch: Blackbox matrix-matrix gaussian process inference with gpu acceleration,”
NeurIPS, vol. 31, 2018.

[26] A. STANDARD, “Ansi/ashrae addendum a to ansi/ashrae standard 169-2020,”
ASHRAE Standing Standard Project Committee, 2020.

[27] D. Hand and P. Christen, “A note on using the f-measure for evaluating record
linkage algorithms,” Statistics and Computing, vol. 28, pp. 539–547, 2018.

[28] X. Ding, W. Du, and A. Cerpa, “Octopus: Deep reinforcement learning for holistic
smart building control,” in ACM BuildSys, 2019, pp. 326–335.

[29] Z. Zhang, A. Chong, Y. Pan, C. Zhang, S. Lu, and K. P. Lam, “A deep reinforce-
ment learning approach to using whole building energy model for hvac optimal
control,” in 2018 Building Performance Analysis Conference and SimBuild, vol. 3,
2018, pp. 22–23.

[30] K. Yang, Y. Chen, X. Chen, and W. Du, “Link quality modeling for lora networks
in orchards,” in 22nd ACM/IEEE IPSN, 2023, pp. 27–39.

[31] X. Ding and W. Du, “Drlic: Deep reinforcement learning for irrigation control,” in
21st ACM/IEEE IPSN. IEEE, 2022, pp. 41–53.

[32] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy optimization,”
in ICML. PMLR, 2017, pp. 22–31.

[33] A. K. Jayant and S. Bhatnagar, “Model-based safe deep reinforcement learning
via a constrained proximal policy optimization algorithm,” NeurIPS, 2022.

[34] C. Zhang, S. R. Kuppannagari, and V. K. Prasanna, “Safe building hvac control
via batch reinforcement learning,” IEEE Transactions on Sustainable Computing,
2022.

[35] H.-Y. Liu, B. Balaji, S. Gao, R. Gupta, and D. Hong, “Safe hvac control via batch
reinforcement learning,” in ACM/IEEE ICCPS. IEEE, 2022, pp. 181–192.

10

	Abstract
	1 Introduction
	2 MBRL for HVAC Control
	3 Motivation
	4 The Design of CLUE
	4.1 Overview
	4.2 Modeling Building Dynamics with GP
	4.3 Meta Kernel Learning
	4.4 Confidence-based Control

	5 Evaluation
	5.1 Experiment Setting
	5.2 Modeling and Uncertainty Estimation
	5.3 Building Control

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

