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ABSTRACT
Occupancy sensing and estimation in large commercial buildings
has become a significant problem to be solved, with applications
ranging from occupancy-based HVAC control to space planning,
and security, etc. Thermal sensing is a promising technology to
solve this problem, being easy to deploy in practice and allowing an
actual occupancy count in a particular room without violating the
data and privacy concerns. While initial strides have been made to
solve this problem with thermal arrays, there are many problems
that remain unsolved, including accuracy performance, overlapping
of sensing areas that lead to under/over-counting, and data training
requirements for different zones.

In this paper, we introduce TODOS1, a novel system for esti-
mating occupancy in intelligent buildings. TODOS uses a low-cost,
low-power thermal sensor array along with a passive infrared sen-
sor. We introduce a novel data processing pipeline that allows us
to automatically extract features from the thermal images using
an artificial neural network. Through an extensive experimental
evaluation2, we show that TODOS provides occupancy detection
accuracy of 98% to 100% under different scenarios. In addition, it
solves the issue of occupancy over/under-counting by overlapping
sensing areas when using multiple thermal sensors in large rooms.
This is done by treating the entire area as a single input thermal
image instead of partitioning the area into multiple thermal im-
ages individually processed. Furthermore, TODOS introduces a
data augmentation technique that allows the generation of training
data for rooms of different sizes and shapes, without requiring spe-
cific training data from each room. Using these data, TODOS can
train specifically designed neural networks optimized for any room
size and shape, and achieve almost the same level of occupancy
detection accuracy in rooms where experimental labeled training
data is available, making it a viable solution that generalizes to the
different rooms in large buildings.

CCS CONCEPTS
• Computer systems organization→ Sensor networks; • Com-
puting methodologies → Neural networks; Image and video
acquisition; Supervised learning by classification.

1TODOS, from Spanish meaning everybody
2Full data experimental traces can be found online: https://doi.org/10.21227/y3dv-8b19
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1 INTRODUCTION
We spend 87% of our time inside buildings [13, 14, 22], making
buildings an important part of our lives. In particular, in large com-
mercial buildings, it is important to know at any time what is the
current and predictive occupancy matrix of all the zones/rooms
in a building. Having detailed occupancy information about the
number of people in real-time and in the near future for each zone
allows for control of the HVAC systems in a much more efficient
manner [3, 5, 15], conditioning zones for temperature only when
occupied, and adjusting ventilation rates based on the actual num-
ber of occupants. Occupancy data can also aid with many building
controls and management decisions. The work in [1] identified
some of the important factors leading to poor maintenance strate-
gies in buildings such as a lack of understanding of occupant sat-
isfaction, inadequate staffing levels, and inefficient maintenance
delivery. To enhance maintenance management operations, Moretti
et al. [26] used occupancy data to alert the maintenance staff for
cleaning operations when a threshold (defined based on the number
of occupants using a facility) was reached. Facility managers can
leverage occupancy sensing technologies to determine space usage
and occupancy mobility patterns for security in buildings [2, 9],
improve health and safety by adjusting ventilation rate for disease
transmission according to the number of occupants [36] and locate
individuals in case of an emergency evacuation by first respon-
ders [37].

Among the many sensing modalities available, thermal occu-
pancy techniques [6, 8, 35, 38] seem the most promising for the
task at hand. This is because they are non-intrusive, low-cost, low-
power, easy to deploy, and perhaps more importantly, they can
provide accurate occupancy counts without violating data and pri-
vacy concerns to the building’s occupants [16]. While thermal oc-
cupancy technology seems very promising, there are still several
issues that prevent full adoption. First, the features extracted from
thermal images have been manually derived, but they may still not
be powerful enough to provide a higher level of accuracy required
for many applications [13]. Second, most of the studies carried
out have concentrated on processing the input of a single sensor.
When deploying multiple thermal sensors in a single zone/room, a
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small amount of sensing overlapping is unavoidable to provide full
coverage. This leads to issues of occupancy over/under-counting,
when multiple sensors deployed in the same zone count the oc-
cupant in an overlapping area twice (over-counting) or when the
portion of the occupant thermal signature is not sufficient to lead
to a count in any of the sensors (under-count). Finally, data-driven
processing pipelines require a significant amount of labeled train-
ing data to build the models. The input of these models for any
specific zone/room will depend on the distribution and location of
the sensors being deployed, which roughly coincide with the size
and shape of the room. Consequently, since the size and shape of
the rooms in a building are different for many of them, this means
that a significant effort must be carried out to obtain adequate
training data for each type of room (size and shape). This last point
is a significant roadblock to the wide adoption of this promising
technology in practice.

In this paper, we introduce TODOS, a novel system for estimat-
ing occupancy in intelligent buildings. TODOS uses a low-cost,
low-power thermal sensor array along with a passive infrared sen-
sor. We introduce a novel data processing pipeline that allows us
to automatically extract features from the thermal images using a
convolutional neural network. Through an extensive experimental
evaluation done in multiple rooms at multiple university buildings,
we show that TODOS provides occupancy detection accuracy of
98% to 100% under different scenarios. In addition, it solves the issue
of occupancy over/under-counting by overlapping sensing areas
when using multiple thermal sensors in large rooms. This is done by
treating the entire area as a single input image instead of partition-
ing the area into multiple thermal images individually processed.
Moreover, TODOS introduces a data augmentation technique that
allows the generation of training data for rooms of different sizes
and shapes, without requiring specific training data from each room.
Using these data, TODOS can train specifically designed neural net-
works optimized for any room size and shape, and achieve almost
the same level of occupancy detection accuracy in rooms where
experimental labeled training data is available, making it a viable
solution that generalizes to the different rooms in large buildings.
The main contributions of this work are as follows:
• We developed TODOS, a thermal-based occupancy sensing sys-
tem that uses low-power, low-cost, easy-to-deploy sensors and a
novel processing pipeline that automatically extracts thermal image
features, treats all the sensor data as a global thermal image per
zone/room and achieves excellent accuracy in occupancy detection.
• We provided more robust training data sets using data augmen-
tation techniques for different combinations of sensors. This allows
TODOS to have better training, even for cases that were unseen in
the original experimental data gathering. We then replicated this
augmented data set and concatenated them according to the room
size and its geometrical shape, so we can train our model for rooms
of any shape and size.
• We run an extensive experimental campaign, to see how TODOS
generalizes to different buildings, air diffusers, and rooms with
different sizes and shapes, and compared TODOS’s performance
using both local training labeled data as well as augmented data
from a different room, showing that TODOS can achieve excellent
performance without the need to collect local data.

• We performed Energy+ simulations to show the energy and qual-
ity of comfort impact that a more accurate occupancy estimation
may have when using occupancy-based HVAC control.

2 RELATEDWORK
Occupancy estimation schemes can be broadly categorized into
user-based and user-free schemes. In user-based occupancy sensing
systems such as [10, 11, 18], the building users carry a device or
tag and are capable of delivering acceptable performance ranging
from 83% to 94% accuracy. However, such systems suffer from
degraded performance issues when the users fail to carry the device.
In addition, many of them suffer from regulatory barriers to entry
due to data and privacy requirement regulations [16]. User-free
schemes [4, 6, 27, 31, 40] do not suffer from the problems mentioned
above. There are many different sensing technologies, including
video-based sensing systems [7, 21, 34], 𝐶𝑂2 sensors [20, 28, 40],
vibration systems [25, 29, 30], WiFi-based systems [24, 39], and
thermal-based occupancy sensing modalities [6, 27, 38].

The critical feature of why thermal-based sensing works is the
temperature differential between occupants and their indoor envi-
ronment, which is usually much lower when it is thermally condi-
tioned by an HVAC system. These systems [6, 8, 35, 38] are capable
of detecting occupants in large groups both in static (e.g. sitting) and
dynamic (e.g. moving) positions. They do require LOS for detection,
but differently from camera-based systems, they are significantly
less intrusive, since they just measure temperature instead of record-
ing a full video [16]. This means that the technology is very suitable
for deployments in indoor environments while complying with data
and privacy requirements.

The authors in [8] proposed an accurate privacy-preserved ther-
mal occupancy sensing system. However, this system design lacks
an energy-saving mode in the sensor hardware when it is idle.
In addition, they use very similar processing techniques to Ther-
moSense [6], including very similar features that are fed to different
types of classifiers to do occupancy estimation. In TODOS, and sim-
ilarly to ThermoSense [6], we do include an additional PIR sensor
that allows us to duty-cycle the thermal array when the sensing
area is empty. Moreover, we propose to use a deeper neural net-
work technique optimized for occupancy sensing and a technique
to generalize to rooms/zones of different sizes and shapes that sig-
nificantly reduces the requirements for training and testing data in
different buildings.

The closest related work to TODOS is ThermoSense [6]. The
node hardware design is very similar. ThermoSense processing
pipeline includes active pixel detection, background subtraction,
and connected components as a preprocessing stage. It then extracts
the total number of active pixels passing a threshold, the number
of the blobs (from connected components), and the size of the
largest blob. These features are then used as inputs for different
types of classifiers (including linear regression, KNN, and ANN),
to classify the number of occupants in the sensing area covered
by the sensor. In their evaluation, they use the linear classifier
since the performance differences among the different classifiers
evaluated were not significant and it was easier to implement the
linear classifier in computationally limited TelosB motes hardware.

Tyndall et al. [35] presented a thermal-based system that is built
upon the work in ThermoSense (i.e. combination of PIR and thermal
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(a) TODOS processing pipeline. The data used for model training depends on the
shape and size of the room the sensor(s) are deployed.

(b) Thermal sensor node
deployed in the ceiling.

(c) The area covered by a sensor
mote with an occupant.

Figure 1: TODOS Deployment and System Overview

array sensor), but with a different heat map array size and different
classifiers such as MLP, SVM, Naive-Bayes, KNN, and linear regres-
sion processing pipeline. The reported performance is similar to
the one reported by ThermoSense.

In our work with TODOS, we do a similar preprocessing stage to
ThermoSense, including active pixel detection and background sub-
traction. However, this information is fed into a deep convolutional
neural network (CNN) which is significantly deeper than the ANN
used in ThermoSense, and we let the CNN learn and extract the
features of the thermal images instead of manually setting the input
features. Moreover, we solved the problem of over/under-counting
occupants when different sensors detect an occupant at the edge
of their sensing range, by aggregating all the sensor data in one
big zone image. Both ThermoSense and TODOS use at the end
of their respective processing pipelines an EWMA low-pass filter
to get rid of spurious occupancy readings over time. Both [6, 35]
are used in our performance evaluation for comparison with the
state-of-the-art schemes available in the literature. As a thorough
comparison, we also tested and analyzed TODOS’s performance
under two different standard CNN architectures.
3 TODOS OVERVIEW
Fig. 1a shows TODOS’s processing pipeline. The sensor nodes are
deployed in the ceiling of a particular room, with a particular de-
ployment of sensors depending on the size and shape of the room.
All the nodes sense a specific part of the room, sample every 20
seconds both the PIR and thermal array sensors, and transmit the
thermal image using an 802.15.4 Zigbee radio to a central gateway
(a TelosB mote attached to the USB port of a CPU). The gateway,
then, performs a radio-to-serial conversion and transfers thermal
images to the processing server. Within the processing server, the
images are concatenated based on a preconfigured order of images
(that depends on the node id). This new larger thermal image is
fed to a convolutional neural network doing classification on the
number of occupants. Finally, this output is passed through a low-
pass EWMA filter to remove high-frequency noise that may appear
from time to time and improve the overall estimate.

3.1 Hardware Sensor Components
TODOS sensing hardware consists of a PIR sensor and a thermal sen-
sor array connected together to a TelosB sensor mote (see Fig. 1b).

The PIR delivers a binary indication of occupancy, and it allows for
saving energy when no activity is detected. The PIR has a detection
viewing angle of 1020 × 920, horizontally by vertically. It is able to
detect motion up to 12𝑚. The other sensor is a thermal array sensor
to determine the number of occupants underneath (see Fig. 1c). The
sensor is a Panasonic Grid-Eye thermal array, which consists of
an 8 × 8 thermal sensor that can cover an area of approximately
2.5𝑚 × 2.5𝑚 with a ceiling height of 3𝑚. It is capable of measuring
64 temperature values, with temperatures ranging from −200𝐶 to
800𝐶 with an accuracy of ±2.50𝐶 .

3.2 Thermal Background
A background subtraction between a new thermal image (with one
or more occupants) and the thermal background when there were
no occupants is done to infer occupancy. This operation works
because the temperature of the background objects (e.g. chairs,
desks, floor, etc.) tends to be around the conditioning temperature
of the room, which usually oscillates between 220𝐶 and 260𝐶 for
HVAC-conditioned spaces in commercial buildings. Since the tem-
perature of a human head and limbs is around 370𝐶 , the difference
is significant enough to work for the detection of occupants.

A thermal background map is maintained to distinguish between
warm objects like computers or refrigerators and occupants. If the
PIR has detected no movement for a certain period of time (e.g.
10-15 minutes), the background gets updated and the standard
deviation is also updated for each grid component. Note that if
an occupant remains in a space for a quite long period of time,
it is possible that the background changes during this period. To
adjust the background in this case, a few grid points are chosen
with the lowest temperatures as the scaling factor. The points with
the lowest temperatures are most likely unoccupied and can be
used to update the old background. Those scale points are then
divided by the old background and averaged to find a multiplier to
update the previous background.

We perform background subtraction by using the difference
between the background and the current thermal map and applying
a standard deviation-based threshold to this difference, we can
create an 8 × 8 binary matrix representing the significantly warm
points from the thermal map.
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Figure 2: (a) An example of a concatenated thermal image of an entire room (40 × 16 pixels), (b) some transformation of the 8 ×
8 array heat map on the occupancy level 3 due to data augmentation, (c) ResNet-18 architecture used in TODOS for a room with

four 8 × 8 sensors forming input and output images of 16 × 16, and (d) a typical residual function used in ResNet-18.

3.3 Pre-processing Data
After reception of all the 8 × 8 thermal images, they are concate-
nated using a preconfigured order based on the placement of the
sensors in the room. For example, for a square room with 4 sensors,
the concatenated input image will be 16 × 16 pixels (using node ID
to find the correct placement). In other words, the final concatenated
thermal image is a thermal representation of the entire room/zone.
We considered two different sets of images to input to the classifier.
Each pixel image could be either in (1) a binary format, which is
the result of the background subtraction and thresholding process
explained in § 3.2, or (2) a grayscale of 8 bits (i.e. 256 values), that is
obtained through the background subtraction but not thresholded.
Fig. 2a shows an example of a concatenated greyscale thermal image
(40 × 16 pixels) representing the entire room, assembled from nine
(9) individual thermal sensor images (8 × 8 pixels). Both types of
input data (i.e. binary and greyscale images) get processed through
the deep learning module to evaluate the performance of each.

3.4 Neural Network Classifier
Fig. 2c shows the convolutional neural network (CNN) architecture
used in our paper, which is Residual Network-18 (ResNet-18) [19]
capable of improving the efficiency of CNN while minimizing the
errors. In general, ResNet family architectures start with a convolu-
tional layer of 64 kernels with size 7 × 7 i.e. (7 × 7, 64), followed by
a 3 × 3 max-pooling layer. In ResNet-18, it is then followed by 16
convolutional layers of: a (3 × 3, 64) layer, another (3 × 3, 128) layer,
then a (3 × 3, 256) layer, and a fourth layer of (3 × 3, 512), and each
layer is repeated 4 times. At the end of the ResNet architecture,
there is an average pooling layer followed by a fully connected layer
with 1000 nodes using the Softmax activation function. ResNet is
made up of a series of residual blocks with skip connections to
address the vanishing gradient problem. Fig. 2d shows a typical
residual function in ResNet-18.

3.5 EWMA Filter
While the classifier provides a good estimate of the occupancy
count on a single thermal image, it is a memoryless system, in the

Table 1: Cross-validation parameters used in TODOS.

Parameter Values Tested Best Values
Epoch 35, 30, 15, 10, 5 35
Batch Size 5, 10, 20, 64 10
Learning Rate 0.01, 0.001, 0.0001 0.001

sense that its output is not affected by previous inputs. In our appli-
cation, we sample occupancy every 20 seconds. However, human
occupancy over time has specific time patterns that can be lever-
aged in order to improve accuracy. For example, it is rare for the
occupancy of a room to be 8 people, and then be 1, and then 8 again,
and so forth. So spurious values of a classifier could be improved
by applying a filter. To get a smooth final occupancy estimate and
remove any spurious values over time, we apply an Exponentially
Weighted Moving Average (EWMA) low-pass filter. The filter is
defined as:

𝑦 (𝑡) = 𝛼𝑦 (𝑡) + (1 − 𝛼)𝑦 (𝑡 − 1) (1)

where 𝑦 (𝑡) is the current occupancy estimate, 𝑦 (𝑡) is the current
occupancy sample from our classifier at time 𝑡 and 𝑦 (𝑡 − 1) is the
previous occupancy at 𝑡 − 1. 𝛼 is a real value between 0 and 1.

3.6 Data Augmentation and Model Training
The dataset in a neural network model needs to be rich and suffi-
cient, so the model performs better and more accurately. However,
collecting and labeling that rich data can be a costly process. Trans-
formations in datasets via Data Augmentation techniques allow us
to reduce those operational costs [23]. In this work, we have used
width shift, height shift, shearing, zooming, rotation, horizontal flip,
and vertical flip geometric augmentations. These types of geometric
transformations are safe in our case since they represent occupants
in different positions with respect to the sensor position, and for
different ceiling heights that can be found in the different rooms in
a building. Fig. 2b shows some examples of changes we applied to
our existing dataset. In our work, we used an augmented dataset
containing 7000 to 10000 thermal images for each occupancy case
between 0 and 11.

We partition our data into training (80%) and testing (20%) sets.
The data used for training is of the form {−→𝑥 𝑁 , 𝑦𝑛}𝑁𝑛=1 with

−→𝑥 𝑁 →



TODOS: Thermal sensOr Data-driven Occupancy
Estimation System for Smart Buildings BuildSys ’23, November 15–16, 2023, Istanbul, Turkey

Figure 3: All sensors time-series data in (a) high occupancy, and (b) low occupancy scenario, in the main test bed.

R𝐷 representing the thermal input images, and 𝑦𝑛 → R represent-
ing the occupancy values. For hyperparameter optimization, we use
a 5-fold cross-validation with grid search to estimate the generaliza-
tion performance. Table 1 shows the validated hyper-parameters,
the values tested by grid search, and the values that minimize the
validation error. Once the optimal hyperparameter values for the
neural network are obtained, we proceed to find the optimal 𝛼 value
for the EWMA filter through another grid search. We found that
a value of 𝛼 of 0.15 works best. Note that the best way to perform
this would be to jointly optimize the cross-validation error for both
the neural network and the EWMA. However, the optimization
libraries available do not easily allow us to optimize both the neural
network and the EWMA together as we would like. We have left
this issue for future work.

4 PERFORMANCE EVALUATION
In this section, we proceed to experimentally evaluate TODOS per-
formance. We considered two cases of TODOS estimates, trained
with binary and greyscale images in the training set as well as
concatenated thermal images with different room shapes and sizes.
We also compare TODOS performance with two different closely
related state-of-the-art thermal occupancy sensing schemes [6, 35],
using different classifiers used in those schemes. For a thorough
comparison, we tested TODOS’s performance under another stan-
dard architecture of VGG-16 [33], as well.
4.1 Experimental Setup
The majority of the experiments were performed in a university
research laboratory of approximately 51𝑚2 area with a rectangular
shape, having 4 cubicles on each long side of the rectangle, and
a meeting table in the middle with 6 chairs around it. There are
also file cabinets near the entrance of the lab. Nine (9) thermal
occupancy sensor motes were deployed to cover the entire lab. We
considered two scenarios of low occupancy (LO, up to 3 occupants)
and high occupancy (HO, up to 8 occupants), using a single sensor
occupancy covering the area underneath i.e. 2.5𝑚 × 2.5𝑚, and using
all the sensors throughout the laboratory (i.e. 9) covering the entire
area studied. Table 2 shows the number of experimental days with
ground truth collected via direct observations of real occupancy
for each scenario. During the experimental days, the room started
being occupied at around 10:00 a.m., and the last occupants left at
around 5:00 p.m.

Table 2: Total experimental days in the main test bed, and
associated data points collected for each occupancy scenario.

Low Occup. (LO) High Occup. (HO)
Single Sensor 5 days ≈ 6,300 pts 3 days ≈ 3,780 pts
All Sensors 15 days ≈ 18,900 pts 4 days ≈ 5,040 pts

The thermal sensors were deployed on the ceiling covering the
entire lab. To avoid missed detection due to blind spots, we de-
ployed the thermal nodes sensing coverage areas very close to each
other. Therefore, some sensor overlapping is inevitable when an
occupant is located at the edge of two adjacent sensing areas. In
this case, it may be counted twice, one by each thermal node or
not counted at all, if the number of active pixels in the thermal
images is not enough to trigger a count. The sensor nodes perform
the background update and background subtraction operations de-
scribed in § 3.2 and transmit the final thermal image to the gateway
node using the low-power 802.15.4 radio. We collected occupancy
sensing data every 20 seconds, and we got around 34,000 data points
(i.e. thermal images) in total for our main test bed. Note that this
was done to get statistically significant results. For HVAC building
control, the occupancy estimate should be ∼5 to 15 minutes, to
match the actuation interval commonly used in buildings.

4.2 Exploratory Analysis
Fig. 3 shows two examples of time-series occupancy in two days, for
our main test bed in high occupancy (on the left) and low occupancy
(on the right) scenarios. The top figures on each sub-figure show
the occupancy estimate for the ThermoSense system using Linear
Regression, the middle figures show TODOS estimates trained with
binary images, and the bottom figures show TODOS estimates with
greyscale images. The data is also concatenated in a single thermal
image covering the entire lab as explained in § 3.3. As we see in
Fig. 3, TODOS corrects for most of the occupancy estimate errors
made by ThermoSense. Examples of this could be seen at [∼1800
sec, ∼2000 sec], and [∼11100 sec, ∼12000 sec] in Fig. 3a, and at
[∼2600 sec, ∼2700 sec] and [∼7500 sec, ∼7700 sec] in Fig. 3b. This
is because the middle and bottom figures are obtained through
data augmentation and thermal image concatenation to address the
issue of sensor overlapping when an occupant is located at the edge
of two adjacent sensors’ coverage areas. In both scenarios, TODOS
with greyscale images provides a slightly better performance than



BuildSys ’23, November 15–16, 2023, Istanbul, Turkey Hamid Rajabi, Xianzhong Ding, Wan Du, and Alberto Cerpa

Table 3: Performance evaluation in terms of occupancy estimation accuracy for different occupancy schemes under the
scenarios of low (LO) and high (HO) occupancy and for two cases of using a single sensor and all sensors.

Low Occupancy Low Occupancy High Occupancy High Occupancy
Classifier/Regressor Single Sensor All Sensors Single Sensor All Sensors
ThermoSense with Linear Reg [6] 0.99 0.93 0.95 0.91
ThermoSense with KNN [6] 0.99 0.93 0.96 0.92
Support Vector Regression (SVR) [35] 1.00 0.94 0.96 0.93
Naive Bayes [35] 0.99 0.91 0.94 0.91
Multi-layer Perceptron (MLP) [35] 1.00 0.94 0.96 0.94
TODOS w/ VGG-16, binary images 1.00 0.97 0.98 0.95
TODOS w/ VGG-16, greyscale images 1.00 0.98 0.99 0.98
TODOS w/ ResNet-18, binary images 1.00 0.98 0.98 0.95
TODOS w/ ResNet-18, greyscale images 1.00 0.99 0.99 0.99

Figure 4: Room shapes and sensor arrangements for all the rooms tested.
when we train it with binary images, as the greyscale image dataset
is more robust against the unseen cases with its wider range of
values for each thermal pixel.

4.3 Accuracy
Table 3 presents the classification accuracy as the main performance
metric result, evaluated for each scheme tested in both low and
high occupancy scenarios for single and all sensor cases. We evalu-
ated two classifiers used in ThermoSense (i.e. linear regression and
KNN), as well as Support Vector Regression, the Naive Bayes and
Multi-Layer Perceptron artificial neural network (MLP) examined
in [35] as the state-of-the-art techniques for comparison. In the
case of support vector machines, we tried an extended version; sup-
port vector regression (SVR) with a non-linear kernel to be more
flexible and robust having floating values in the output instead
of integers [32]. The output will then be rounded to the nearest
integer. The MLP classifier trains the model via back-propagation
and the loss function is assumed to be cross-entropy in order to be
comparable with the proposed classifier in this paper. We consid-
ered the same input features from the ThermoSense work (i.e. total
number of active pixels, number of connected components, and size
of the largest component) for all the state-of-the-art classifiers. It is
noted that all results for these classifiers are obtained with no image
concatenations. Also, we tested TODOS with VGG-16 architecture
presented in [33] along with ResNet-18. We evaluate TODOS using
these two architectures with both binary and greyscale images.
All results regarding TODOS are achieved through thermal image

concatenation and data augmentation, except when using a single
sensor (no concatenation).

Based on Table 3, the accuracy values for the low occupancy
scenario (in both single and all sensor cases) are generally higher
than the ones for the high occupancy scenario. That is due to the
limited number of occupants in low occupancy scenarios that may
lead to experiencing much fewer unseen cases in the training set.
Considering the single sensor case alone, our proposed TODOS
scheme is the only approach that delivers an accuracy of 100%
in both low and high occupancy scenarios. The reason would be
the data augmentation used by TODOS makes the final classifier
more robust against unexpected shapes of active pixels and their
combinations coming from the thermal image data. In addition,
we process the input images after concatenating them based on
the sensor placement in the room (automatically done based on
sensor position recorded at deployment time). Furthermore, there is
a more significant improvement when we use TODOS trained with
greyscale images than when we train it with binary images. This
way, we can correct most of the errors, especially in high occupancy
scenarios for the case of all sensors (i.e. 3% and 4% improvements
in VGG-16 and ResNet-18, respectively).

4.4 Generalization to other Rooms
In this section, we discuss and evaluate the generalization power of
our TODOSmodel to other rooms that have no labeled training data.
Different rooms have different sizes and shapes. This means that
the concatenated thermal images used as input for our models are
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Figure 5: Accuracy results for all rooms for binary and greyscale images for VGG-16 and ResNet-18 models under two different
conditions of: trained with local data, and with the main room’s data.

Table 4: Additional rooms to test the generalization of
TODOS, including the area, # of data points, and # of sensors

Room Area # of Data Points # of Sensors
SE2-230D ∼25𝑚2 4 days ≈ 3,600 pts 3
SE2-230V ∼25𝑚2 4 days ≈ 3,600 pts 5
SE2-230C ∼20𝑚2 5 days ≈ 4,500 pts 3
SE2-230Q ∼25𝑚2 4 days ≈ 3,600 pts 4
SE2-219 ∼10𝑚2 3 days ≈ 2,700 pts 2
facB-1 ∼55𝑚2 5 days ≈ 4,500 pts 6
facB-2 ∼36𝑚2 4 days ≈ 3,600 pts 4
facB-3 ∼36𝑚2 5 days ≈ 4,500 pts 4
castle-250 ∼90𝑚2 1 day ≈ 1,260 pts 12

different for each room/zone, which implies that we need different
training data to train the models for each room. The fundamental
question that we would like to answer is whether we can use labeled
data obtained in a room/zone, and even a different building, and
modify it to use it for training in a different room/zone.

For this, we launched an experimental campaign, deploying oc-
cupancy sensors in 10 rooms in 3 different buildings, all of different
shapes and sizes. Table 4 shows the parameters of the rooms tested.
Perhaps more importantly, all the rooms in the different buildings
have different zone air diffusers, which could change the thermal
signature detected by the sensor from building to building. Fig. 4
shows the shapes and sizes of the different rooms tested. Each of
the inner squares in the rooms represents the area covered by a
single sensor. For each of these rooms, we collected ground truth
occupancy data, such that we could train the models with data from
the specific room. We call this case, the local data case. In addition,
we use data from the SE2-314 room (our main test bed). This room
not only has the ground truth data for the total occupancy but also
the occupancy sensed by each sensor in the room. Using the data
from this room, we “manufacture” a training set with a subset of
the data when the target room is smaller (i.e. we only take a small
subset of the occupancy data representing a smaller room), or we

duplicate data when the target room is larger (i.e. we increase the
data size to fit the larger room). We call this second method main
room data. All the data used (i.e. local data and main room data) is
augmented with the techniques discussed in § 3.6.

A special case happens when the target room has an irreg-
ular shape, like an L shape. In this case, the training set is of
the form {−→𝑥 ′

𝑁
, 𝑦𝑛}𝑁𝑛=1 with

−→𝑥 ′
𝑁

→ R𝐷 representing the thermal
input images, and 𝑦𝑛 → R representing the occupancy values.
−→𝑥 ′

𝑁
= 𝑔(−→𝑥 𝑁 ) = 𝐴𝐷×𝐷

−→𝑥 𝑁 with 𝐴 being an indicator vector and
−→𝑥 𝑁 being the training data from the main room. This vector simply
allows us to zero out occupancy inputs that do not exist in the room
due to its irregular shape.

Fig. 5 shows the accuracy results for all rooms for binary and
greyscale images for VGG-16 and ResNet-18 models under two dif-
ferent conditions of (1) trained with local data, and (2) with the main
room data. We also include the results of ThermoSense trained with
local data for a baseline. In general, we see that grayscale images
produce better results than binary images. In addition, using the
local data produces more accurate results when using the ResNet-18
models. However, the results are only marginally more accurate
than when using main room data ( 1% more error in the worst
case). This discovery is very significant. It means that with a single
curated training set, we are able to produce good enough training
sets to train models in rooms of different shapes and sizes obtain-
ing very similar performance than when using ground truth data
in situ. This increases the applicability of our technique since we
could potentially pre-train any model before deployment by only
knowing the size and shape of the room in question.

4.5 Training Data Size
Due to the non-linear nature of TODOS architecture, it is expected
to have high variance in the occupancy predictions, while at the
same time being able to capture relevant relations between features
and target outputs. In general, this comes at the expense of requiring
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Figure 6: Accuracy as a function of the training data for room SE2-230V trained with (a) local data, and (b) main room data.

Figure 7: Monthly energy consumption for (a) over-counting, and (b) under-counting scenarios.

more training data. Thus, a good model is one that requires as little
training data as possible to achieve acceptable accuracy.

Fig. 6 shows how the performance of TODOS as a function of
total training data in case of being trained with the local data for a
specific room (i.e. SE2-230V), and the data from our main room (i.e.
SE2-314). As Fig. 6 shows, in general, TODOS with greyscale images
delivers a higher accuracy at the expense of requiring more train-
ing data to converge to stable accuracy. Also, the proposed CNN
architecture in TODOS (i.e. ResNet-18) provides higher accuracy
with less amount of training data compared to VGG-16 architecture.
This is due to the skip connections through the residual blocks in
ResNet addressing the vanishing gradient issue that makes ResNet
be faster and more accurate than VGG.

5 ENERGY AND QUALITY OF COMFORT
We analyze the energy and quality of comfort impact on HVAC
building control using an occupancy-based controller. The analysis
is based on an accurate occupancy estimate. The energy analysis
was simulated based on: (1) the time-series occupancy informa-
tion for two data schemes of TODOS trained with local data, and
with the main room data, and also (2) the amount of over/under-
heating/ventilation as one important input factor. We divided the
analysis into over-counting and under-counting scenarios to study
the effect of false positive/negative occupancy counts on energy
consumption and temperature effectiveness (as a quality of comfort

metric). We provided the input occupancy to the Energy+ simu-
lator using the Blended Markov chain (BMC) occupancy model
presented in [15]. The input model to the Energy+ includes 3786
and 3773 over-counting samples and 2252 and 2637 under-counting
samples for TODOS trained with local data and main room data,
respectively, with a total number of samples of 13088. Based on
our Energy+ simulation results, we discuss the energy usage and
quality of comfort in the following sections.

5.1 Energy Consumption
The impact of both data schemes (i.e. TODOS trained with local
data, and with main room data) on energy usage is investigated in
this section. The building’s HVAC system includes a single duct
terminal reheat composed of Variable Air Volume (VAV) boxes, and
an Air Handler Unit (AHU). The AHU has heating and cooling coils
together with a fan, that can change the air’s temperature. The VAV
boxes take this pre-conditioned air from the main duct and control
the airflow for each zone. The power consumption sources include
the supply fan, heating coils, and cooling coils. The HVAC control
method is an Energy+ built-in rule-based control method based on
occupied/unoccupied zone information. In the working time (i.e.
07:00 am - 06:00 pm), the heating and cooling setpoints are 21.1°C
and 23.9°C, and in the non-working time (i.e. 6:00 pm - 07:00 am),
they are 12.8°C and 40°C, respectively.

The monthly energy consumption for two data schemes in two
scenarios of over/under-counting is shown in Fig. 7. The Energy+
controller operates with occupancy information provided by each
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Figure 8: Monthly temperature RMSE for over-counted occupants for (a) over-counting, and (b) under-counting scenarios.

occupancy data scheme, with the over/under-counting values to the
ground truth for each scheme. In the over-counting scenario, the
energy consumption resulting from both data schemes are almost
similar (see Fig. 7a), since those schemes have very closed values
of over-counting. In this scenario, the HVAC controller will tend
to consume more energy by trying to condition zones that may
be empty, but TODOS occupancy estimation informs that they
are occupied. In terms of under-counting, both schemes provide a
very similar energy use over the entire year. In the under-counting
scenario, the HVAC system will tend to float the temperature in
zones that it believes to be empty, even though they are occupied.
In this case, the HVAC controller consumes less energy, however,
that would be at the expense of degrading the quality of comfort.
5.2 Quality of Comfort
In this section, we analyze the impact of both data schemes on the
building’s temperature effectiveness. Temperature effectiveness is
defined as the ideal temperature that should be provided to the
occupants for quality of comfort. To be ASHRAE [12] compliant,
the setpoint temperatures must fulfill the Predictive Mean Vote
(PMV) condition: −0.5 ≤ 𝑃𝑀𝑉 ≤ 0.5, where PMV is calculated by
Fanger’s equation [17]. PMV predicts the mean thermal sensation
vote on a standard scale for a large group of people. ASHRAE
developed the thermal comfort index by using coding -3 for cold, -2
for cool, -1 for slightly cool, 0 for neutral, +1 for slightly warm, +2
for warm, and +3 for hot. PMV has been adopted by the ISO 7730
standard and it recommends maintaining PMV at level 0 with a
tolerance of 0.5 as the best thermal comfort. Fanger’s PMV depends
on temperature, humidity, air velocity, occupants’ clothing, and
activity. We get the best temperature when the PMV is 0 (see the
PMV equation above). Then, we compare the ideal temperature
with the temperature under two different data schemes. For this
analysis, we examine the root mean square error (RMSE) of the
zone temperature difference per person between these two values.

The product of room temperature RMSE and the number of oc-
cupants for two data schemes under the over- and under-counting
scenarios is shown in Fig. 8. In the over-counting scenario, both
data schemes result in a better quality of comfort (i.e. smaller RMSE
deviation) compared with the under-counting case. However, this
higher quality of comfort comes with a high price tag, since this is
obtained by over-conditioning the spaces and using a lot of energy
as seen in § 5.1. In the under-counting scenario, TODOS produces
a similar quality of comfort for both data schemes (even with com-
parable energy consumption as seen before). The energy savings

in the previous section in the under-counting scenario, come at a
significant cost in the quality of comfort, as the HVAC controller
will save energy by not conditioning certain zones that are in reality
occupied. Therefore, that trades off the energy consumption for
lower occupant quality of service.

6 DISCUSSION
The most important discovery was howwell the models generalized
by using the main room data, even in completely different rooms,
different buildings, with even different air diffusers, with only a very
small degradation in performance compared to using local data. We
believe this works mostly because of two things. First, the type of
thermal images is simpler than more complex and high-resolution
images available elsewhere (e.g. web images), which makes it sim-
pler for a well-trained neural network to recognize occupants and
get very accurate counts. Second, the geometric transformations
used on the augmented dataset allow compensation for different
occupant body sizes, different ceiling heights, and different sensing
deployment strategies, among other factors, even if they do not ap-
pear in the original labeled data. This is an important point, mostly
because the transformations applied are mostly “safe”, i.e. they do
not change the occupancy count, allowing to pay the price of data
collection and labeling once and replicate it elsewhere.

However, there may be limits to the above. While we have tested
in different buildings with different zone air diffusers and supply
vents, there are many types that we did not test. It may be possible
that a specific air diffuser type could change the thermal signature
detected by the sensor from building to building. We believe we
could compensate for these cases using a color transformation that
we did not try in our data augmentation work. We have left this
more detailed analysis for future work.

Another thing to discuss is that when applying data augmenta-
tion techniques for different room shapes and sizes, larger errors
may be introduced due to over/under counting between adjacent
training patches. For example, if we have augmented training data
that consists of 16 × 16-pixel images concatenated together to form
a new image of 32 × 16 pixels (a new rectangular room from two
squared patches), some of the image relations will be broken. While
an occupant between two sensors within each square may be cor-
rected counted, this will not be the case for an occupant between
the two different squares. So a slight degradation in performance
should be expected. This can be seen in the results of the Castle
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Building, which showed the largest degradation in performance be-
tween the local data and the main room data (close to 1%). However,
this degradation should be acceptable since it does not significantly
impact the energy use and quality of comfort as shown in § 5.

7 CONCLUSION
In this paper, we present TODOS, a novel system for estimating
occupancy in intelligent buildings. TODOS uses a low-cost, low-
power thermal sensor array along with a passive infrared sensor.
We introduce a novel data processing pipeline that allows us to
automatically extract features from the thermal images using an
artificial neural network. Through an extensive experimental evalu-
ation, we show that TODOS provides occupancy detection accuracy
of 98% to 100% under different scenarios. In addition, it solves the
issue of occupancy over/under-counting produced by overlapping
sensing areas when using multiple thermal sensors in large rooms.
This is done by treating the entire area as a single input thermal
image instead of partitioning the area into multiple thermal images
individually processed. Finally, TODOS introduces a data augmenta-
tion technique that allows the generation of training data for rooms
of different sizes and shapes, without requiring specific training
data from each room. Using these data, TODOS can train specifi-
cally designed neural networks optimized for any room size and
shape, and achieve almost the same level of occupancy detection
accuracy in rooms where experimental labeled training data is avail-
able, making it a viable solution that generalizes to the different
rooms in large buildings.
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