
Orientation Estimation Piloted by Deep
Reinforcement Learning

Miaomiao Liu, Sikai Yang, Arya Rathee, Wan Du
Computer Science and Engineering

University of California, Merced, USA
{mliu71, syang126, arathee, wdu3}@ucmerced.edu

Abstract—Inertial Measurement Unit (IMU) sensors are com-
monly used for estimating device orientation. However, due to the
irregular movements of devices and distortions of magnetic fields,
IMU sensors may present varying data quality. Conventional
data fusion approaches such as Complementary Filter (CF) and
Kalman Filter struggle to adapt to these variations. Recent
efforts have explored the utilization of deep learning to directly
infer orientation from IMU sensor data. Nevertheless, when
facing new scenarios that have different data distributions from
training (e.g., different movement patterns or magnetic fields),
deep learning methods cannot accurately infer orientation. In this
paper, we conduct extensive experiments and identify two critical
parameters for CF-based orientation estimation. We propose
employing deep learning to adjust these two parameters, rather
than directly inferring the final orientation outcomes. Since the
relationship between sensor data and the settings of CF param-
eters is relatively simpler than the relationship between sensor
data and orientation, a deep learning model of the same size can
learn the first relationship more effectively and efficiently. We
develop DRLPilot which leverages Deep Reinforcement Learning
(DRL) to pilot CF-based orientation estimation based on the data
quality of IMU sensors. Our DRL framework incorporates novel
state design and reward function to accommodate the unique
features of IMU sensor data and orientation estimation. Extensive
experiment results demonstrate DRLPilot outperforms baseline
systems by 27% in orientation accuracy.

Index Terms—Inertial Measurement Unit, Orientation Estima-
tion, Deep Reinforcement Learning

I. INTRODUCTION

Orientation estimation is crucial for many mobile applica-

tions, including virtual reality [1], [2], augmented reality [3],

and gaming [4]. Inertial Measurement Unit (IMU) sensors on

mobile devices are commonly used for orientation estimation.

Gyroscopes measure angular velocity. With an initial orien-

tation, we can track the device’s orientation by integrating

angular velocity over time. However, sensor noise is also

integrated over time. Accumulated noise causes orientation

drift rapidly [5], [6], [7], [8], [9]. Accelerometers can measure

the gravity direction of the Earth. Magnetometers measure the

magnetic field direction of the Earth. Using gravity direction

and magnetic field direction as references, the gyroscope-based

orientation tracking can be constantly calibrated. However,

when the device is accelerating, accelerometers cannot accu-

This publication was supported in part by NSF Grant #2008837. Any
opinions, findings, and conclusions expressed in this material are those of
the authors and do not necessarily reflect the views of the funding agencies.

rately measure gravity direction. Meanwhile, metal can distort

magnetic fields, tilting the magnetometer away from north.

Various classical sensor fusion methods have been proposed

for orientation estimation, such as Complementary Filter (CF)

and Kalman Filter (KF) [10], [11], [12]. For example, a recent

work, MUSE [13], combines the data from three IMU sensors

by a complementary filter for orientation estimation. These

classical sensor fusion methods do not rely on training, so

they can be used to new scenarios easily. However, they need

careful parameter tuning, which requires expert knowledge and

extensive trial-and-error experiments.

Recent studies, such as IDOL [9] and RTAT [14], leverage

deep learning to train a model by labeled data. These models

take the raw IMU sensor data as input and outputs the

device’s orientation. If well trained, they demonstrate the

ability to provide accurate orientation predictions. However,

these methods struggle to adapt to new scenarios where the

movement patterns or magnetic fields are different from the

scenario where the training data is collected. For instance, for

a model trained by the data collected at one place, it may fail

to do prediction at a different place, since the magnetic field

in the new place may be different from that in the training

data. It is labor-intensive to collect training data that covers

all scenarios such as diverse movement patterns or magnetic

fields. Moreover, modeling the relationship between raw IMU

sensor data and orientation results becomes complex if we

have the data that covers all scenarios. Consequently, a small

neural network model may struggle to effectively learn this

intricate relationship due to its limited modeling capacity. This

problem is especially severe for orientation estimation, since

orientation tracking is an iterative process, i.e., the orientation

estimated at one time step will be used as the basis for the

subsequent time steps.

By comparing the above two kinds of methods, we find

that deep learning methods are capable of utilizing ground-

truth data to automatically tune parameters and learn non-

linear relationships without requiring explicit modeling of the

system dynamics, while classical data fusion methods can

easily scale to different scenarios. In this paper, we propose

to combine both advantages by integrating deep learning into

classical orientation estimation (using a CF). We observe two

primary parameters in CF: α and β that control the weight

of accelerometer and magnetometer respectively. They also

reflect the trustworthiness of these two sensors. Extensive

experiments show that α and β greatly impact the accuracy of

CF-based orientation estimation. Their best setting also varies

over time, due to the variation of sensor data quality.

We develop DRLPilot, a CF-based orientation estimation

system that can dynamically adapt its parameter configurations

using a Recurrent Neural Network (RNN). With the deep

learning module piloting the classical orientation estimation,

DRLPilot can dynamically adapt to sensors’ varying quality.

Instead of directly outputting the orientation result (a 3×3

matrix), the deep learning module now predicts α and β (two

scalars), which is a relatively lightweight task. Additionally,

the potential strategy to determine α and β is based on the

observation on sensors’ data quality, which is ubiquitous for all

scenarios. Therefore, this framework grants DRLPilot stronger

modeling capacity and generalizability.

Due to the absence of the ground truth α and β, supervised

learning cannot be adopted for learning these two parameters.

Even though ground-truth orientation can be obtained using

an external device like a VR system, the labeled orientation

data cannot be directly used to train our neural network.

First, as orientation does not serve as the output of the

neural network model in DRLPilot, we are unable to utilize

the labeled orientation for computing a loss that could drive

gradient descent and back propagation. Second, the orientation

at the current time step is influenced by the orientation at

all previous time steps, which makes it almost impossible to

acquire the real ground truth of α and β based on the ground-

truth orientation. Our experiments also show that calculating

optimal α and β for each time step individually fails to obtain

the ground truth of these two parameters (Section III).

To tackle the above challenges, we design a Deep Rein-

forcement Learning (DRL) framework to learn the best α and

β setting through ground-truth orientation. The DRL agent is

a neural network model that takes the features we extract from

IMU sensor as inputs, and outputs the setting of α and β at

each time step. The inferred setting will be used to configure

CF for orientation estimation. Our DRL-based orientation

estimation framework proposes two novel designs. First, to

guide the learning process, our DRL module takes some
physics-aware features extracted from IMU data as inputs,

instead of raw sensor data. Second, a customized reward is

designed by considering both orientation error and time-series

orientation estimation. The reward is used to update the agent.

To facilitate DRL training, we extract a set of features

from the raw implicit IMU readings that are relevant to α
and β. For example, we propose a novel approach that uses

raw IMU sensor data to predict the errors in accelerometer

and magnetometer measurements, which are directly related

to α and β determination. It utilizes the gyroscope’s temporal

accuracy to measure angular errors of accelerometer and

magnetometer. We incorporate these two errors and many

other digested information into the state design of our DRL

framework (Section IV-B).

We design a customized reward function to better reflect

the quality of the DRL’s actions and further boost its training

efficiency. Since the orientation at a time step will be used

as the basis to estimate future orientations, the α and β
setting at a time step will influence not only current orientation

estimation but also the orientation in a short future. Therefore,

the setting of these two parameters may have a delayed impact

on the orientation accuracy in the future. To that end, we

design an inertial reward, which allows the delayed impact

of α and β to be aggregated into the reward, and thus can

better reflect the quality of DRL outputs.
We utilize the dataset provided by [15] to evaluate DRLPi-

lot. The authors collect this dataset from five volunteers at two

distinct places, with a total data collection duration of approx-

imately 500 minutes. The data was sampled at a frequency of

50 Hz, resulting in an aggregate of approximately 1,500,000

samples. We augment the dataset by 12x as introduced in

Section V to conduct training and test. Additionally, we collect

more data at three new locations following the same data col-

lection method to evaluate the performance of DRLPilot. The

newly collected data has approximately 215,040 data samples.

From our experiments, DRLPilot reduces the orientation error

by 27% compared to baseline systems.
In summary, this paper makes the following contributions:
• We analyze the advantages and disadvantages of classical

and deep learning based orientation estimation methods.

• We develop a DRLPilot system to combine advantages

from both methods in a DRL framework. The key design

principle of combining deep learning with classical meth-

ods has the potential to be applied to other tasks beyond

IMU orientation estimation.

• We boost the DRL performance by customized state and

reward designs.

• Extensive experiments are conducted to validate the ef-

fectiveness of DRLPilot.

II. EXPERIMENTAL STUDY ON EXISTING SOLUTIONS

Classical orientation estimation methods rely on physical

observations to track orientation, e.g., angular velocity integra-

tion and calibrations via gravity and magnetic field directions.

As an example, the state-of-the-art solution, MUSE [13],

adopts a Complementary Filter (CF) that fuses the IMU

sensors to track orientation. However, MUSE requires ex-

perts’ effort and experience to tune the parameters. On the

other hand, deep learning is capable of utilizing the ground

truth to automatically optimize its neural network parameters,

via gradient descent and back propagation. When properly

trained, the latest Recurrent Neural Network (RNN) based

orientation estimation solution, RTAT [14], can achieve better

performance than classical methods.
However, RTAT fails to maintain its high orientation esti-

mation accuracy when the scenarios become complex. In this

section, we test the performance of RTAT at different places,

and with different facing directions of the user.

A. RTAT’s Performance at Different Places.
Besides the regular ’room’ dataset, there is also another

dataset collected in a ’hallway’ in [14], where the magnetic

field is distorted, making its magnetometer data pattern differ-

ent from the ’room’ dataset. With the two different datasets,

TABLE I
RTAT ERROR ON DIFFERENT DATASETS

Test

Train
Room Hallway Hybrid

Room 11.78◦ 21.44◦ 13.87◦

Hallway 84.33◦ 17.47◦ 30.56◦

Hybrid 48.56◦ 19.43◦ 22.32◦

we train three separate models, respectively using ’room’ data

only, ’hallway’ data only, and both datasets together. For

simplicity, we use room model, hallway model, and hybrid

model to represent these models. We also test these models’

performance on different datasets, as shown in Table I. In our

experiments, the testing data and the training data may come

from the same dataset, but they never overlap.

From Table I, when a model is trained with ’room’ data and

tested on ’room’ data, its error is 11.78°. When another model

is trained with ’hallway’ data and tested on ’hallway’ data, the

error is 17.47°. The ’hallway’ has higher magnetic distortion

(31°) compared to the ’room’ according to [14]), indicating

lower quality of magnetometer measurements. However, when

a hybrid model is trained and test on the two combined

datasets, its error is 22.32°, which is higher than the two

separately trained models. This is because the learning task

is becoming too complex for the model to learn from two

distinct data distributions, and thus the modeling complexity

exceeds its modeling capacity, causing the model to underfit

the combined datasets.

In comparison, although classical methods are also impacted

by magnetic distortions, they are not affected by the task

complexity as much, i.e. their performance on hybrid data will

simply be the average, since they do not require training.

B. RTAT’s Performance with Different Facing Directions.

The data used by RTAT [14] is for the arm tracking task, in

which users wear a smartwatch and perform daily movements

like drawing and exercising. We analyze the data used by

RTAT and find it is collected with users roughly facing north

(with difference < 29°), which implies the magnetic field

is pointing forward. Additionally, users do not change their

facing direction or move their shoulder much, due to the con-

straint of the arm tracking task. This constraint is also shared

by other arm tracking studies [13], [16], [17]. However, this

constraint does not apply in the task of orientation estimation,

where users may perform any movements, like turning around

and walking freely. To test the performance of RTAT with

different facing directions of the users, we generate augmented

data based on the original ’room’ data from RTAT, in which

a virtual user performs the same original movement but with

different facing directions: 360° from north to west, south and

east, with a step length of 30°. Details of data augmentation

can be found in Section V.

First, we test the original RTAT model, i.e. the model

trained using the original data without augmentation, on the

augmented data with different facing directions. Model1 in

Figure 1 demonstrates our testing results. The radius of the

Fig. 1. RTAT Performance of a specialized model and a generalized model.

outer circle stands for an error of 60◦, and the distance from

each dot to the center of the circle represents the orientation

error at the corresponding facing direction. As we can see, on

the original facing direction (0°), the model performs the best,

with an error of 11.78°, since the model is trained on the same

direction. As the test data’s facing direction changes, the error

increases. Specifically, at 150°, 180°, and 210°, the error is

52.02°, 53.03°, 52.98° respectively.

Second, we train a Model2 using all augmented data from

0° to 360°, and also test its performance on different facing di-

rections. As shown in Figure 1, comparing to Model1, Model2

averages the performance on all directions and achieves overall

error of 18.21◦, 54.86% lower than the average error of

Model1, since it is trained on all directions. However, this

comes at a cost of the best performance, at a 0° (18.21◦ v.s.

11.78◦). This shows that when the training data size increases

by 12×, RTAT struggles to learn all data effectively. The

modeling task for the neural network exceeds its modeling

capacity and results in under-fitting and increased error.

In comparison, the facing direction hardly affects the per-

formance of classical methods. This is because the movements

of the users remain same across the augmented data, and the

facing direction does not affect the accuracy of the physical

IMU sensor fusion.

Discussion: The neural network in RTAT is responsible for

modeling the entire orientation estimation process, from IMU

sensor data inputs to orientation outputs. In complex scenarios,

the learning task of the neural network becomes heavy, and the

performance of RTAT falls behind due to its limited modeling

capacity. Simply increasing the size of the neural network

may not solve this problem, since a larger neural network

requires more resources and needs much more training data

to converge, resulting in significant increased labor cost on

training data collection. In this paper, we investigate one

question: can we achieve accurate orientation estimation at

different places and different directions with similar model

size as RTAT?

III. PRELIMINARY DESIGN

In this section, we propose to combine the advantages of

both classical methods and deep learning methods into one

system. The key in designing such a system is to enable a deep

learning module to automatically optimize the parameters of a

classical orientation estimation module, while letting the latter

fuse the data from three IMU sensors.

A. Two Important CF Parameters

For the classical orientation estimation module, we use

the CF, as MUSE [13] does. Comparing to another popular

algorithm, Kalman Filter, CF does not require the sensor noise

model to be Gaussian. It is commonly used in navigation

systems, where data from gyroscopes, accelerometers, and

magnetometers are fused to provide orientation information.

1) Parameter α and β in CF: CF integrates the gyroscope

readings over time to track orientation. However, noises and

biases in the gyroscope readings are also accumulated along

with gyroscope integration, causing drifts in the gyroscope-

based orientation results. CF also uses an accelerometer and

a magnetometer to provide calibrations for the orientation

results, since they measure the reference directions: gravity

and north, respectively. However, due to the relatively high

noise in the accelerometer and magnetometer readings, they

are granted with weighting coefficients. This ensures that they

contribute to smooth calibrations rather than overwhelming

the gyroscope-based orientation results. Putting everything

together, CF updates the orientation by Equation (1):

Θt = Θt−Δt ·Rt
gyro · αRt

acc · βRt
mag (1)

In Equation (1), Rt
gyro is the orientation from the integration

of gyroscope readings at time step t, which relies on the

orientation at the previous time step Θt−Δt. Rt
acc and Rmag

are the rotation matrices derived from the accelerometer and

magnetometer calibrations at time step t. α and β are the

weighting coefficients that determine how much Θt relies

on accelerometer and magnetometer, respectively. They con-

trol the percentage of the accelerometer and magnetometer

calibrations to be incorporated, and typically set between 0

and 1. A higher value of α assigns a greater weight to the

accelerometer, and a higher value of β assigns a greater weight

to the magnetometer.

2) Importance of Choosing the Best α and β: Apparently, α
and β are directly related to the quality of the accelerometer

and magnetometer, respectively. Conversely, the value of α
and β should reflect the trustworthiness of the accelerometer

and magnetometer in order to achieve the best accuracy. For

instance, if the linear acceleration is high, the accelerometer

readings contain both linear acceleration and gravity, leading

to erroneous calibration. In such cases, α should be decreased.

Similarly, in the presence of significant magnetic distortion,

the magnetometer may not point north accurately, and its

calibration may be compromised. As a result, β should be

decreased to mitigate the impact of magnetometer inaccuracies

on orientation estimation.

We also conduct real experiments to investigate how dif-

ferent settings of α and β affect the performance of CF

for orientation estimation. Figure 2 presents our experimental

results. We set α and β to ex, where −7 � x � −1 with a step

length of 0.4. Figure 2(a) shows the mean orientation error of

CF on 20-minute data collected in a non-distorted magnetic

field. We can see that when the magnetic field is stable, the

orientation estimation performs better with higher β. On the

other hand, Figure 2(b) shows the mean orientation error of a

20-minute data collected by the same user, but in a distorted

magnetic field. In this case, CF should not rely too much on

the magnetometer, and lower value of β is favored. Figure 2(c)

presents the hybrid result of 14 data traces collected from these

two environments by different users. As shown in these figures,

12.53◦, 15.49◦, and 12.28◦ are the lowest orientation error

can achieve by setting appropriate parameters. These results

suggest that the optimal settings of the α and β are different

for different data traces, depending on the magnetic field and

device motions.

3) Importance of Adaptively Choosing α and β: Statically

choosing the optimal values of α and β may not suffice to

achieve the highest orientation accuracy, as the quality of the

accelerometer and magnetometer may fluctuate significantly

over time. To validate this argument, we conduct real exper-

iments using a short data clip spanning three seconds. We

use CF to process this clip using different values of α, while

setting β as its best static value we found from Figure 2.

Figure 3(a) illustrates how the orientation error changes over

time. It is evident that the curves take turns to reach the

lowest error among themselves within only three seconds. This

observation suggests that the optimal value of α frequently

fluctuates and requires to be adaptively determined. Similarly,

we run CF with different values of β while setting α statically.

We also observe fluctuations as depicted in Figure 3(b).

Therefore, the optimal value of β also needs to be adaptively

calculated. Moreover, these two parameters jointly impact

the orientation results and their values should be adaptively

adjusted in conjunction with each other.

B. Employing Deep Learning to Determine α and β

Based on the observations from Figure 3, it is challenging

to adaptively and accurately adjust the values of α and β
jointly. To address this challenge, we charge the deep learning

with this task, leveraging its capability for automatic parameter

tuning. Additionally, via changing the output target of the deep

learning module from a 3×3 orientation matrix to two scalars,

we simplify the output complexity of the module. Since the

optimal values of α and β are closely tied to the quality of

their respective sensors, the strategy to calculate them can

be ubiquitously applied, unlike the scheme which directly

calculates the orientation matrix, which is susceptible across

different scenarios (Section II-B). Therefore, by employing

deep learning to pilot the CF via dynamically providing α
and β, we can enhance the potential modeling capacity of

the deep learning module. As a bonus, since the task is more

ubiquitous now, it may also improve the generalization ability

of the deep learning module.

To deploy a deep learning module to calculate the optimal

values for α and β, ground-truth values of α and β at every

time step are needed for training. However, obtaining these

ground-truth values is inherently difficult. As per Equation (1),

the orientation result at each time step serves as basis for future

(a) Stable magnetic field (b) Distorted magnetic field (c) Hybrid magnetic field

Fig. 2. Orientation error with different value of gravity and magnet coefficients.

(a) Orientation error with different
values of α, while β is 0.00136.

(b) Orientation error with different
values of β, while α is 0.01005.

Fig. 3. Orientation error with different value of α and β over time.

estimations. Conversely, the orientation result at every time

step is affected by the values of α and β at all previous time

steps. Therefore, it is almost impossible to globally optimize

α and β at all time steps, especially considering that there are

usually 50∼60 time steps in one second (depending on the

device’s sampling rate). Consequently, the optimization task

becomes exponentially large and challenging.

1) Attempt of Replacing Ground Truth: To make up for the

absence of the ground truth of α and β, we try to calculate

pseudo-truths for α and β, denoted as αpt and βpt, which

are calculated via locally minimizing the orientation error at

each time step separately. Therefore, given specific Θt−Δt,

Rt
gyro, Rt

acc, and Rt
mag in Equation (1), and additionally with

the orientation ground truth Θt
0, the pseudo-truth αpt and βpt

stand for the values that minimize the difference between Θt

and Θt
0, denoted as ∠(Θt,Θt

0):

< αpt, βpt >= argmin
α,β

∠(Θt,Θt
0) (2)

We conduct real experiments to assess the feasibility of
pseudo-truth values. When we apply αpt and βpt to the

CF, we observed a significant reduction in orientation error

to less than 3°. This is because αpt and βpt can eliminate

errors in accelerometer and magnetometer calibrations, leaving

the gyroscope as the primary error source. It’s important to

note that this low error can only be achieved offline, as

calculating αpt and βpt requires the orientation ground truth.

Therefore, we need the deep learning module to calculate

αpt and βpt online. We set the offline calculated αpt and

βpt as target outputs, and IMU sensor readings as inputs to

train a RNN model. Unfortunately, our results indicate that

the model struggle to learn the calculation of the pseudo-

0 10 20 30
Time (s)

-1

-0.5

0

0.5

1

Al
ph

a
Fig. 4. The value of αpt.

0 10 20 30
Time (s)

-1

-0.5

0

0.5

1

Be
ta

Fig. 5. The value of βpt.

truth. Since the offline calculated αpt and βpt can be negative

sometimes, we calculate their average absolute values, |αpt|
and |βpt|, which are 0.1037 and 0.0667 respectively. However,

the values inferred by the RNN, denoted as α̂pt and β̂pt,

their average absolute values, |α̂pt| and |β̂pt|, are 0.0256 and

0.0163. Moreover, their average absolute differences from αpt

and βpt are 0.1041 and 0.0661, implying that the RNN learns

this calculation terribly. To further explain these results, we

zoom in αpt and βpt, as demonstrated in Figure 4 and Figure

5. They show the values of αpt and βpt within 30 seconds.

We observed severe fluctuations in their values, making it

challenging for a neural network to learn effectively.

2) Using Orientation Error to Guide Training: As the

attempt to utilize pseudo-truth fails to compensate for the

absence of ground truth, we propose to leverage orientation

error information to guide the training of α and β. Given

that minimizing orientation error is our primary objective,

we seek to incorporate the error information into the training

process. However, since orientation is not the output of the

deep learning module, gradient descent and backpropagation

can no longer transmit the error back to optimize the model.

To that end, we convert the supervised learning into a DRL

module, which uses negative orientation error as reward to

pilot CF by outputting α and β via its actions.

DRL is a promising machine learning approach that com-

bines deep learning with reinforcement learning [18]. A DRL

agent learns to perform a task through trial and error by

interacting with the environments. The agent receives rewards

or penalties based on its actions and learns to maximize its

cumulative reward over time. DRL is particularly useful in

environments where traditional methods such as rule-based

systems or supervised learning are difficult or impossible

to apply. Examples include games [19], robotics [20], and

Agent

Environment
(Complementary

Filter)
Parameter

IMU Readings Ground Truth
Orientation

State
Action

Reward

Observe State

IM
Observe State

Fig. 6. System Architecture of DRLPilot

autonomous driving [21], where the agent must learn to adapt

to the changing conditions.

IV. DRLPilot DESIGN

In this section, we introduce the design of DRLPilot, in-

cluding an overview, state, action, reward, and training policy.

A. DRLPilot Overview

Figure 6 illustrates the architecture of DRLPilot. At each

time step t+1, what the agent of DRLPilot can observe from

the environment includes IMU readings and the output of CF

at the previous time step (the estimated orientation Θt). We

design the state of DRLPilot based on these observations. The

responsibility of the agent is to adjust the parameter settings

of α and β at time step t+ 1 in CF.

DRLPilot extracts system dynamic features from IMU read-

ings, which are intricately related to the setting of α and

β [22]. Section IV-B provides detailed insights into these

dynamics. Among these features, some remain constant scalar

values across different reference frames, while others are

vectors obtained from the device’s local reference. Utilizing

these extracted features as states, the agent makes decisions

and outputs α and β for CF to estimate the orientation at time

t + 1. IMU readings are also the inputs to CF. We leverage

the ground-truth orientation to guide the training process, but

it is no longer needed once the agent is well-trained.

B. State Representation in DRLPilot

A state is a feature vector that represents the current

environment observed by an agent at any given time. It

provides the necessary information for the agent to make

decisions on what actions to take. Table II demonstrates the

features of our state representation. Since DRLPilot’s agent is

responsible for tuning parameters for the sensors, the features

within a state should adequately capture the reliability of

sensor readings. Higher reliability should correspond to larger

weights for the associated sensor, and vice versa. The state

features of DRLPilot includes two parts: those not controlled

by the agent (1-9 in Table II) and those controlled by the agent

(10-13 in Table II).

1) Features not Controlled by the Agent: These features

consist of readings from the three IMU sensors and informa-

tion extracted from the sensor readings, including accelerom-

eter and magnetometer direction errors, the angle between

the accelerometer and magnetometer, and the magnitude of

the three IMU sensors. These features are affected by the

movements of the devices and the magnetic field in the

surrounding environment, but are not affected by the actions

of the DRL agent.

Feature 1-3 in Table II are straightforward. They are the

readings we get from the three sensors.

Feature 4&5: Accelerometer and magnetometer direction
error. These two kinds of errors are paramount in determining

sensor quality. To accurately calculate the two errors, we need

to transform accelerometer and magnetometer directions into

the global reference, and compare them with their expected

directions: gravity and magnetic north. However, accurately

calculating these errors requires ground-truth orientation. To

that end, we propose using the gyroscope to measure the direc-

tion errors of the accelerometer and magnetometer since the

gyroscope can be trusted in a short term [5]. The calculation

process is shown below:

R̂ =

t2∏

t=t1

Rt
gyro (3)

−̂→acc = −→acc(t1) · R̂ (4)

ˆ−−→mag = −−→mag(t1) · R̂ (5)

ˆerracc = ∠(−̂→acc · −→acc(t2)) (6)

ˆerrmag = ∠(ˆ−−→mag · −−→mag(t2)) (7)

Within the local reference, for a given time step t2, we

aggregate the historical gyroscope readings Rt
gyro within 160

ms (determine via real experiments) to derive a gyroscope-

based rotation R̂ from time t1 = t2−160ms to the current time

t2. Subsequently, based on this rotation, we rotate the direc-

tions of the accelerometer reading −→acc(t1) and magnetometer

reading −−→mag(t1) at t1, and acquire two anticipated directions

of accelerometer and magnetometer at t2, denoted by −̂→acc and
ˆ−−→mag. We then calculate the angle between the actual direction

of accelerometer at t2 and the anticipated direction, denoted

by ˆerracc. We use that angular difference as an anticipation

for accelerometer direction error at t2. The same principle

is applied in calculating the magnetometer direction errors

ˆerrmag . The whole calculation process is conducted within

local reference and does not require ground-truth orientation.

We evaluate the errors we derived from this process with those

calculated using ground-truth orientation in Section VI-C.

Feature 6: Angle between magnetometer and accelerometer.
This can be easily calculated within the local reference via

simply calculating the angle between the raw readings of

the accelerometer and magnetometer. This angle can provide

insights into the variation of data quality, particularly by

comparing it with historical values. For instance, a signif-

icant change in the angle between the magnetometer and

accelerometer could indicate two potential scenarios. First,

it may suggest a high degree of linear acceleration, causing

a deviation of the accelerometer direction from the gravity

direction. Second, it might imply severe magnetic distortions,

resulting in the magnetometer pointing to various directions

TABLE II
FEATURES IN DRLPilot’S STATE

Not controlled by agent
1. Accelerometer direction in local reference

2. magnetometer direction in local reference

3. Angular velocity in local reference

4. Accelerometer direction error

5. Magnetometer direction error

6. Angle between accelerometer & magnetometer

7. Accelerometer magnitude

8. Angular velocity magnitude

9. Magnetometer magnitude

Controlled by agent
10. Orientation estimated by CF

11. Accelerometer direction in global reference

12. Magnetometer direction in global reference

13. Angular velocity in global reference

at different time steps. In either scenario, the data quality is

impacted, and thus the weights should be adjusted.

Feature 7-9: Magnitude of the three IMU sensors. The mag-

nitude of the three sensors can be easily calculated from the

raw data. A3 [5] and MUSE [13] propose trusting accelerom-

eter when the system is static. To detect static moments,

they observe whether the measurements of accelerometer are

around 9.8m/s2. When accelerometer measures 9.8m/s2, the

system is most probably static, and the accelerometer quality

is guaranteed, thus the weight for accelerometer should be

high. However, when the accelerometer magnitude deviates

significantly from 9.8m/s2, indicating the system is moving

violently. In such cases, the gravity will be polluted by a large

proportion of linear acceleration, and according to A3 [5], the

gyroscope may also become untrustworthy, hence the weights

should be decreased.

The magnitude of angular velocity indicates how fast the

system rotates. According to A3 [5], gyroscope errors increase

with rising angular velocity, leading to faster error accumula-

tion in gyroscope integration. Therefore, it might be beneficial

to increase the weights of the accelerometer and magnetometer

to intensify calibrations.

The magnetometer is different from these two sensors.

Deviations in the magnitude of the magnetometer could reflect

the intensity of magnetic distortions [23], [24]. The magnitude

of the Earth’s magnetic field is typically around 50μT , but it

changes when distorted by metal. In the presence of magnetic

distortions, the directions of the magnetic field change at dif-

ferent locations, causing errors in the directions measured by

the magnetometer. As a result, calibration via magnetometer

could be wrong and pollutes orientation estimation. Therefore,

it would be wise to decrease the weight of magnetometer to

avoid further impact on orientation estimation.

2) Features Controlled by the Agent: These features include

the orientations calculated by CF, accelerometer and magne-

tometer directions, and angular velocity in global reference.

Feature 10: Orientation estimated by CF. The orientation

matrix at each time step is the target that the agent controls via

tuning the weights for the accelerometer and magnetometer.

Feature 11-13: Accelerometer direction, magnetometer di-
rection, and angular velocity in global reference. The features

introduced before contain 24 dimensions in total. However, a

DRL agent may not learn well if the agent has limited influ-

ence on the state. We observe that, among the 24-dimension

designs above, only the 9 dimensions of the orientation matrix

are controlled by the agent: The agent controls the weights for

the accelerometer and magnetometer, and the weights controls

the calibration processes, ultimately affecting the orientation.

In the pursuit of expanding the dimensions that the agent can

control, we transform the readings in the local reference into

the global reference. Since the sensor readings are measured

in the local reference, we apply the estimated orientation

matrix to transform the accelerometer direction in the local

reference to the global reference. Intuitively, this direction

should point ’down’ in the global reference. Any deviation

from this alignment suggests potential sensor inaccuracies. We

use the same method to transform the magnetometer direction

and angular velocity we measured from the local reference to

global reference.

C. Action and Reward in DRLPilot

1) Action in DRLPilot: Based on the outlined state above,

DRLPilot aims to optimize the parameter settings for CF to

accurately estimate the orientation of a device in varying

environments with varying levels of sensor noise over time.

The primary goal is to find the best parameter settings that

enable CF adapt to changes in sensor noise, thereby providing

reliable orientation estimates over time. The action space

consists of two continuous values that control the weight of

the accelerometer and magnetometer coefficients, respectively.

2) Reward in DRLPilot: The primary objective of orien-

tation estimation is to minimize the overall orientation error

in 3D space. The reward is defined to minimize the error.

Our dataset contains the ground-truth orientation at each time

step, which is used to calculate the reward. Orientation error

refers to the minimum degree of rotation required to align

the estimated orientation with the ground-truth orientation.

Smaller errors result in a higher reward.

We use 3D rotation matrix to represent the orientation cal-

culated by DRLPilot, denoted as R. Suppose the ground-truth

orientation is RG. Since a rotation matrix is orthogonal, its

inverse is its transpose. Then the rotation difference between

two rotation matrices is:

ΔR = R ·R−1
G = RG ·RT (8)

where ΔR can be transformed to rotation angle in degrees,

denoted as errori. We define our reward function as follows:

Reward = 180◦ − errori (9)

3) Refined Reward Design: We further improve the reward

design of DRLPilot based on the original one, so that it learns

more accurately. Since orientation estimation is an iterative

process, the orientation result at every time step will also serve

as the basis to infer future results. Therefore, the choices of

α and β will not only affect the current orientation result,

but also all results within a short period. To fully reflect the

quality of the current choice of α and β, we design a simple but

effective inertia reward that aggregates the orientation errors

with diminishing weights.

Reward(t) = Reward(t−Δt)∗kI+(180◦−errori)∗(1−kI) (10)

As Equation (10) shows, the inertia reward is calculated based

on the reward of the last time step and the current orientation

error. Specifically, it is a linear combination of both, as the

inertial coefficient kI between 0 and 1, which controls the

ratio of the combination. If kI = 0, it means the inertia is

zero and the reward degrades to the ordinary design that only

reflects the quality of the choice of α and β at current time

step. If kI = 1, it means the inertia is infinite, and the reward

never updates. Therefore it is crucial to set the best value for

kI . To that end, we conduct real experiments on the setting of

kI and find kI = 0.2 achieves the best performance.

D. DRLPilot Training

Policy gradient algorithms are a class of RL methods that

aim to optimize the policy parameters of an agent to maximize

its expected cumulative reward. These algorithms rely on

computing an estimate of the policy gradient for the expected

cumulative reward, which is then used to update the policy

parameters using a stochastic gradient ascent algorithm. Policy

gradient algorithms can handle continuous action spaces.

Θ ← Θ+ α�θ EπΘ [r] (11)

Various policy gradient algorithms can be used to train the

agent. In this study, we utilize proximal policy optimization

(PPO) [25]. PPO has gained popularity due to its utilization

of the clipped surrogate objective function (Equation (12)) to

improve its stability and robustness to hyper-parameters.

LCLIP (θ) = Ê[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (12)

rt(θ) =
πθ(at|st)

πθold(at|st) (13)

where Êt is the empirical average over a batch of trajectories,

Ât is an estimator of the advantage function, and rt(θ) is

the probability ratio between the new policy and the old

policy. The hyperparameter ε controls the extent to which the

policy update is clipped, and its value can be tuned to balance

the trade-off between stability and speed of convergence. By

using the clipped surrogate objective function, PPO is able to

improve the stability and convergence of the policy updates,

making it a promising choice for training RL agents in a

variety of environments [26], [27].

V. IMPLEMENTATION

Data Augmentation. Suppose users collect the training data

while facing north and then uses a model trained on that data to

infer actions performed while facing west. Unless there is no

directional difference in the user’s motion (e.g. only rotating

in the north/west direction), the inference will be affected. To

magnify this problem, we desire data that has different direc-

tionalities. However, humans cannot control their motions to

ensure only directional differences in collected data. Therefore,

we augment existing data by simulating various directions,

where virtual users replicate identical motions along these

simulated paths.

To achieve that, we modify the raw data to simulate different

directionality. Apparently, from the perspective of a virtual

user, the motions remain unchanged. The only difference is

the direction of magnetic north. Consequently, it appears as

the north is rotating relative to the user, meaning we only need

to rotate the magnetometer readings to augment the data.

To implement this, we first transform the magnetometer

readings into the global reference using ground-truth orienta-

tions. Then in the global reference, we rotate the magnetometer

directions along the vertical axis with different angles, such

as 30°. We then transform the data back to the local reference

using the ground-truth orientations. This process involves

setting 30° as the step length and rotating the data through

360°, thus generating 12x data with different directionality.

DRLPilot Implementation. DRLPilot is implemented using

the CleanRL framework, which is a flexible and extensible

reinforcement learning framework, allowing us to easily ex-

periment with different algorithms, environments, and config-

urations. The agent in DRLPilot is based on the actor-critic

architecture and utilizes two LSTM layers, each with 128

neurons, the output of actor network is a fully-connected layer

with 2 neurons (action space is 2), the output of critic network

is one fully-connect layer with 1 neuron. To train DRLPilot,
a computer that is equipped with an 13th Gen Intel Core i9-

13900HX CPU and a NVIDIA GeForce RTX 4090 GPU is

used. It runs on the Ubuntu 22.04 operating system.

Hyper-parameter Tuning. The performance of a DRL

agent can be significantly affected by the choice of hyperpa-

rameter values. However, there is no straightforward method

to determine the optimal hyperparameter combination that

would result in the best possible total reward. We set the

hyperparameters through a set of experiments. The optimizer

used for gradient-based optimization is Adam with a learning

rate of 7e-5. The discount factor used to weight future rewards

is set as 0.99. The lambda parameter for GAE (Generalized

Advantage Estimation) is 0.95, which is used to balance bias

and variance when estimating the advantage function. The

clipping parameter used to bound the change in the policy

distribution during each update is 0.2.

VI. EVALUATION

In this section, we test the performance of DRLPilot, includ-

ing overall performance, performance decomposition analysis,

and system overhead.

A. Experimental Settings

Dataset. We use the dataset introduced in [15] to do exper-

iments. This dataset contains about 1,500,000 data samples.

To ensure a comprehensive evaluation of DRLPilot, we collect

new data at three additional testing places using the same data

TABLE III
ORIENTATION ERROR ESTIMATED FROM DIFFERENT METHODS ON

ORIGINAL DATASET.

Methods RTAT CFso RULE DRLPilot
Hybrid data 16.55◦ 16.76◦ 15.80◦ 11.54◦

Room data 11.67◦ 13.14◦ 12.28◦ 10.42◦

Hallway data 21.31◦ 20.29◦ 19.30◦ 16.23◦

TABLE IV
ORIENTATION ERROR ESTIMATED FROM DIFFERENT METHODS ON

ROTATION DATASET.

Methods RTAT CFso RULE DRLPilot
Hybrid data 58.45◦ 17.58◦ 16.53◦ 14.41◦

Room data 35.42◦ 14.98◦ 14.18◦ 12.74◦

Hallway data 80.87◦ 19.73◦ 18.78◦ 17.78◦

collection method. The new data we collect includes 215,040

data samples. By using a larger and more diverse dataset, we

can better assess the performance of DRLPilot under a broader

range of conditions.

Evaluation Metrics. We evaluate the orientation estimation of

DRLPilot and all the baselines via 3D orientation error. It is

the minimal degree of rotation needed to align the estimated

orientation to the ground truth orientation.

Baselines for Orientation Estimation. We compare the ori-

entation estimation error of DRLPilot with three baselines.

• RTAT [14]: The latest data-driven method to estimate

device orientation based on BiLSTM-based neural net-

work. The neural network takes the data from all the

three IMU channels as input and outputs the orientation

of a device. The original network design in this paper

is simple. For fairness, we add an additional 128-unit

BiLSTM layer to the original network, resulting in more

neurons and a similar model size as DRLPilot.
• CFso: Like MUSE [13], we use a complementary filter

with static setting of parameters. We use both north and

gravity as anchors to calibrate the orientation estimation

by gyroscope integration. We use the ground truth data

from the hybrid training dataset to determine the static

optimal values of α and β (i.e., 0.015 and 0.003 respec-

tively), as introduced in Section III.

• RULE: A custom rule-based weight-tuning comple-

mentary filter. It combines the strategies of tuning the

weights of the accelerometer and magnetometer from

two methods respectively. For α, RULE adopts the

strategy of MUSE [13], which uses the accelerometer

only when it roughly measures the magnitude of gravity

(9.8 ± 1.3m/s2, where 1.3 is determined via real ex-

periments on MUSE), thus α = 1, otherwise α = 0.

For the magnetometer, RULE adopts the strategy from

another work [24]. It mainly uses the measured magnetic

field magnitude to detect magnetic distortion. As β floats

between 0 and 1, when the magnetic distortion is severe,

it could contain large errors, β is set to be lower. RULE
combines both rules to determine α and β. By comparing

RULE and DRLPilot, we demonstrate the advantage of

using DRL to pilot CF-based orientation estimation.

B. DRLPilot Performance

We compare the performance of DRLPilot to the baseline

methods. Our evaluation considers the overall performance,

the generalization ability and the performance over time.
1) Overall Performance: We show the overall performance

of all methods on both original dataset and our augmented

rotation dataset. The original dataset refers to the data provided

by [15], we combine the data from the two places (room and

hallway) to train a general model. The rotation dataset refers

to the rotated data of the original dataset by 360◦, with a step

30◦, as introduced in Section V.

Table III depicts the performance of different methods on

the original dataset. The hybrid data combines room data and

hallway data. We train RTAT and DRLPilot using hybrid

training data and test the models using hybrid data, room data,

and hallway data, respectively. The test data has never been

seen by the models during the training phase. We apply the

optimal parameter settings for CFso found offline to the same

test data as RTAT and DRLPilot. Table III shows the testing

result. The average orientation error of RTAT , CFso, RULE,

and DRLPilot on hybrid data is 16.55◦, 16.76◦, 15.80◦, and

11.54◦, respectively. DRLPilot reduces the orientation estima-

tion error by 30.3%, 31.1%, and 27% compared to RTAT ,

CFso and RULE, respectively. It also achieves the lowest

error on room data and hallway data.

To further test, Table IV depicts the overall orientation error

training and testing on the augmented rotation dataset. The

rotation dataset is 12x compared to the original one since

we have rotated the data to 12 different directions. We train

RTAT and DRLPilot using the hybrid rotation data, and test

the models using hybrid rotation data, room rotation data,

and hallway rotation data, respectively. We still use the same

parameters we found above for CFso because rotation does

not influence the performance of CF too much. The average

orientation error on hybrid data of RTAT , CFso, RULE, and

DRLPilot is 58.45◦, 17.58◦, 16.53◦ and 14.41◦, respectively.

DRLPilot reduces the orientation error by 75.3%, 18.0%, and

12.83% compared to RTAT , CFso, and RULE respectively.

It still achieves the lowest error on room data and hallway

data. The results indicate DRLPilot has better performance

than baselines. The significant increase in errors of RTAT is

attributed to the lightweight design of RTAT , which underfits

the augmented dataset.

Compared to CFso, DRLPilot dynamically adjusts the

parameters, which is more adaptive than the fixed optimal

setting. Compared to RTAT , the main reason for the superior

performance of DRLPilot is that the outputs of its neural

network are scalars, which are irrelevant to facing directions.

On the other hand, the output of RTAT are 3D orientation

vectors affected by the facing direction, making the learning

task more complex. Compared to RULE, DRLPilot uses a

neural network to make finer parameter adjustments, since it

is trained using orientation error as a reward.

Fig. 7. Orientation error on rotation dataset (hybrid data)

CDF on Rotation Dataset. Figure 8 illustrates the CDF of

DRLPilot’s orientation error in comparison to RTAT and

CFso when tested on the hybrid test data. As depicted in

Figure 8, the 80th percentile orientation error of DRLPilot,
RTAT , and CFso measures approximately 18◦, 25◦, and

100◦ respectively. The 60th percentile orientation error of the

three systems is approximately 13◦, 18◦, and 50◦ respectively.

Consistently, DRLPilot outperforms the baseline methods.

2) Performance of different rotations: As we introduced

before, the rotation dataset is created by rotating the original

dataset by 360 ◦, with a step of 30 ◦. Figure 7 depicts the

overall performance of all methods on rotation dataset. They

are trained by combining all directions of the rotated data.

We show the orientation error on each rotation angle and the

average orientation error on all rotation angles.

As shown in Figure 7, the estimation error of RTAT on

all rotation angles fluctuates from 32◦ to 95◦. While, the error

of CFso and DRLPilot on all rotation angles is stable. CFso

and DRLPilot are based on Complementary Filter to output

orientation. They exhibit relatively consistent orientation error

across different rotation angles, with only small variations.

The observed variations in orientation error across different

rotation angles may be attributed to the fact that the rotational

motion decomposition along the North is different for the same

physical motions. Specifically, when the decomposition is

around the North, the calibration from magnetometer readings

may fail, leading to higher orientation error.

3) Performance Along with Time: Figure 9 illustrates the

orientation error of DRLPilot and the baseline methods over

time for a 100-second data trace. The figure clearly shows

that DRLPilot consistently outperforms RTAT and CFso,

while also demonstrating greater stability over time. To further

quantify it stability, we compute the standard deviation of

the orientation error for the three methods. They are 9.30

for DRLPilot, 11.42 for CFso, and 12.92 for RTAT . This

suggests that DRLPilot has small variations on orientation

estimation compared to the baseline methods.

4) Model generalization: We conduct further evaluation

to assess the generalization of DRLPilot and the baseline

methods to the new places that were not seen in the training

dataset. We collect some new data in three places, P1, P2,

and P3. P1 is an outdoor residential area, P2 is a large

classroom in a University, and P3 is an indoor living area.

Figure 10 presents the orientation error of DRLPilot and the

baseline methods in the three new places. In each of them,

DRLPilot consistently outperforms RTAT and CFso. It is

worth noting that RTAT shows degraded performance in new

places, mainly because of the different magnetic fields present

in those places. As a supervised learning method, RTAT has

limited generalization ability to new places, and exhibits large

variations in performance in such scenarios.

C. Performance Decomposition of DRLPilot

We test the performance improvements from different com-

ponents within DRLPilot, encompassing different state, action,

and reward designs. Each unique design necessitates an addi-

tional training cycle. Given that training a model on the aug-

mented rotation dataset typically consumes approximately 20

hours, we opt to conduct experiments using the considerably

smaller original dataset to explore and determine the design

for each component.

State Design. Table V presents the performance of different

state designs. “Local data only” represents the design using

nine-dimensional IMU readings as a state at each time step,

including three-dimensional accelerometer readings, three-

dimensional gyroscope readings, and three-dimensional mag-

netometer readings. The orientation error for this state design

is 18.98◦, which is 39.2% higher than DRLPilot. "Without

global data" employs feature 1-10 from Table II but excludes

the feature 11-13. The orientation error is 15.31◦ for this state

design. It achieves 24.62% higher error than DRLPilot. "With-

out gravity and magnet errors" includes everything but feature

4 and 5 in Table II. The resulting orientation error is 14.04◦,

which is 21.67% higher than DRLPilot. This result reveals

the importance of gravity and magnet error we extracted from

gyroscope readings. In order to evaluate the accuracy of our

extracted gravity and magnet error from gyroscope readings,

we conduct experiments where we replace our extracted values

with the ground truth values in the state, which is "Ground-

truth gravity and magnet errors" in Table V. This state design

resulted in an orientation error of 11.48◦, demonstrating that

our extracted gravity and magnet error values do not degrade

the agent’s performance. These experimental results indicate

the features we extract to constitute a state are important to

guide the agent make better decisions.

Action Design. In our design, the agent of DRLPilot
performs actions in a continuous range within [0, 0.2], the

average orientation error 11.54◦ from our experiments. To

investigate the effectiveness of action with value 0, we conduct

experiments by setting the action range to [0.001, 0.2]. The

results show that the average error in this case is 13.31◦, which

Fig. 8. Original dataset. Fig. 9. Orientation error over time. Fig. 10. Different places. Fig. 11. Different setting of kI

TABLE V
ORIENTATION ERROR OF DIFFERENT STATE DESIGNS.

States Error
Local data only 18.98◦

Without global data 15.31◦

Without gravity and magnet errors 14.04◦

Ground-truth gravity and magnet errors 11.48◦

DRLPilot 11.54◦

TABLE VI
ORIENTATION ERROR OF DIFFERENT ACTION DESIGNS.

Actions Error
α, β ∈ [0.001, 0.2] 13.31◦

α, β ∈ [0, 0.25] 13.25◦

α, β ∈ [0, 0.2] 11.54◦

α ∈ [0, 0.2], β = 0.003 17.16◦

α = 0.015, β ∈ [0, 0.2] 11.74◦

is 13.3% higher than the setting of [0, 0.2]. This indicates that

the action with value 0 is important for the system, as it allows

the agent to take actions that do not rely on accelerometers and

magnetometers when their senor noise is severe. To determine

the upper bound of the action value, we conduct experiments

by setting the action range to [0, 0.25], the average error under

this configuration is 13.25◦, marking 12.9% increase compared

to the [0, 0.2] setting. Following these experiments, we set the

action range to [0, 0.2].

Disable One of the Two Actions. To further validate the

necessity of both actions, we conduct experiments by assigning

one action to the optimal value as CFso, allowing the agent to

control the other one. As presented in Table VI, the experimen-

tal results indicate that when the agent exclusively controls the

accelerometer coefficient α while the magnetometer coefficient

β is set to a static value of 0.003, the average orientation

error is 17.16◦. This value was 32.75% higher than when both

parameters were jointly controlled. Similarly, when we set the

accelerometer coefficient α to the default value of 0.015 and

enable the agent to control only the magnetometer coefficient

β, the average orientation error is 11.74◦, marginally higher

than when both parameters were jointly controlled.

Reward Design. In demonstrating the efficacy of our en-

hanced reward design, Figure 11 illustrates the orientation

error under various settings of kI . Specifically, when kI = 0, it

signifies the original reward design, resulting in an orientation

error of 13.29◦. From the same figure, it’s observed that at

kI = 0.2, the system achieves optimal performance, leading

to an orientation error of 11.54◦. This refined reward design

showcases a notable reduction in error by 13.17% compared

to the original design.

D. System Overhead

The DRLPilot model we develop is lightweight. It is only

1.7 MB in size. It takes DRLPilot about 0.15 ms to perform

an action. In comparison, the RTAT model, with an identical

size, achieves an average inference time of 0.003 ms. The

results are tested on a system powered by a 13th Gen Intel

Core i9-13900HX CPU and a NVIDIA GeForce RTX 4090

GPU, operating within the PyCharm IDE using the PyTorch

framework on Ubuntu 22.04 operating system.

The latency of DRLPilot is higher, approximately 50 times

that of RTAT. Considering the inference latency of RTAT

on mobile devices like Samsung S9 and Google Pixel 3,

which stand at 2.98 ms and 1.82 ms for processing 1-second

sampling data, respectively, the estimated latency for DRLPilot
on these devices would be approximately 149 ms and 91 ms

for processing 1-second sampling data. Taking into account

that these two devices were released in 2018 and the comput-

ing capabilities of newly published devices are substantially

stronger, Hence, it can be inferred that DRLPilot is capable of

achieving real-time performance on modern mobile devices.

VII. RELATED WORK

Traditional Methods for Orientation Estimation. Various

sensor fusion methods have been proposed to estimate device

orientation in the literature, such as the Kalman filter [10],

extended Kalman filter [11], and complementary filter [12].

The Kalman-filter-based methods relies on a mathematical

model of the system being estimated. If the model is incorrect

or inaccurate, the filter’s estimates can be unreliable [5], [13].

Complementary Filter provides a simple and low-cost way

for orientation estimation. It does not require a mathematical

model, but it requires to set its parameters carefully for accu-

rate sensor calibration. A3 [5] proposes gyroscope integration

with opportunistic replacements for device orientation estima-

tion, utilizing both gravity and magnetic north for calibration.

MUSE [13] relies only on magnetic north via a CF, limiting

its orientation calibration to 2 Degrees of Freedom (DoF).

Data-Driven Methods for Orientation Estimation. Recent

studies have explored the use of data-driven methods for

processing IMU measurements and estimating orientation [6],

[28], [29], [30], [7], [8], [9], [14], [31]. Two representative so-

lutions for orientation estimation are IDOL [9] and RTAT [14].

However, both methods rely on supervised learning, which

requires a large amount of labeled data. Additionally, su-

pervised learning may suffer from performance degradation

when sensing characteristics (e.g., gravity error or magnetic

field) change. Self-supervised learning has recently been used

to extract contextual features from unlabeled IMU data for

different application tasks, aiming at building "foundation"

models, e.g., TPN [32] and LIMU-BERT [30]; however, they

still require labeled data for new scenarios.

Deep Reinforcement Learning. DRL has been used in a

wide range of applications, such as navigation [33], smart

buildings [34], [35], and irrigation control [36]. In this paper,

we integrate CF into a DRL framework for IMU sensor

data processing. We design the DRL to guide the agent in

learning adaptive parameters for the CF. Our solution provides

better generalization compared to supervised learning and bet-

ter adaptability compared to traditional complementary filter-

based orientation estimation. It is orthogonal to the sensor data

denoising methods [37].

VIII. CONCLUSION

This paper proposes a novel orientation estimation approach

combining deep reinforcement learning and complementary

filter. We develop DRLPilot, a DRL framework that incor-

porates complementary filter for orientation estimation. With

our customized data of the DRL states and reward function,

DRLPilot can adjust the parameters of the complementary

filter based on the data quality of three IMU sensors. Extensive

experiments demonstrate that DRLPilot exhibits better model-

ing capability than supervised learning methods and superior

adaptability compared to the classical complementary filter-

based orientation estimation method.

REFERENCES

[1] Manikanta Kotaru and Sachin Katti. Position tracking for virtual reality
using commodity wifi. In IEEE CVPR, 2017.

[2] Miaomiao Liu, Xianzhong Ding, and Wan Du. Continuous, real-time
object detection on mobile devices without offloading. In IEEE ICDCS,
2020.

[3] Swadhin Pradhan, Ghufran Baig, Wenguang Mao, Lili Qiu, Guohai
Chen, and Bo Yang. Smartphone-based acoustic indoor space mapping.
ACM IMWUT, 2018.

[4] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko, Helge
Rhodin, Shafiei, et al. Vnect: Real-time 3d human pose estimation with
a single rgb camera. ACM Transactions on Graphics, 2017.

[5] Pengfei Zhou, Mo Li, and Guobin Shen. Use it free: Instantly knowing
your phone attitude. In ACM MobiCom, 2014.

[6] Changhao Chen, Xiaoxuan Lu, Andrew Markham, and Niki Trigoni.
Ionet: Learning to cure the curse of drift in inertial odometry. In AAAI,
2018.

[7] Mahdi Abolfazli Esfahani, Han Wang, Keyu Wu, and Shenghai Yuan.
Orinet: Robust 3-d orientation estimation with a single particular imu.
IEEE Robotics and Automation Letters, 2019.

[8] Martin Brossard, Silvere Bonnabel, and Axel Barrau. Denoising imu
gyroscopes with deep learning for open-loop attitude estimation. IEEE
Robotics and Automation Letters, 2020.

[9] Scott Sun, Dennis Melamed, and Kris Kitani. Idol: Inertial deep
orientation-estimation and localization. In AAAI, 2021.

[10] Roberto G Valenti, Ivan Dryanovski, and Jizhong Xiao. A linear kalman
filter for marg orientation estimation using the algebraic quaternion
algorithm. IEEE Transactions on Instrumentation and Measurement,
2015.

[11] Angelo M Sabatini. Quaternion-based extended kalman filter for deter-
mining orientation by inertial and magnetic sensing. IEEE Transactions
on Biomedical Engineering, 2006.

[12] Mark Euston, Paul Coote, Robert Mahony, Jonghyuk Kim, and Tarek
Hamel. A complementary filter for attitude estimation of a fixed-wing
uav. In IEEE IROS, 2008.

[13] Sheng Shen, Mahanth Gowda, and Romit Roy Choudhury. Closing the
gaps in inertial motion tracking. In ACM MobiCom, 2018.

[14] Miaomiao Liu, Sikai Yang, Wyssanie Chomsin, and Wan Du. Real-time
tracking of smartwatch orientation and location by multitask learning.
In ACM SenSys, 2022.

[15] Arm tracking dataset, 2022. https://github.com/mmmmliu/RTAT/.
[16] Yang Liu, Zhenjiang Li, Zhidan Liu, and Kaishun Wu. Real-time arm

skeleton tracking and gesture inference tolerant to missing wearable
sensors. In ACM MobiSys, 2019.

[17] Sheng Shen, He Wang, and Romit Roy Choudhury. I am a smartwatch
and i can track my user’s arm. In ACM Mobisys, 2016.

[18] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil An-
thony Bharath. Deep reinforcement learning: A brief survey. IEEE
Signal Processing Magazine, 2017.

[19] Deheng Ye, Guibin Chen, Wen Zhang, Sheng Chen, Bo Yuan, Bo Liu,
Jia Chen, Zhao Liu, Fuhao Qiu, Hongsheng Yu, et al. Towards playing
full moba games with deep reinforcement learning. NeurIPS, 2020.

[20] Hai Nguyen and Hung La. Review of deep reinforcement learning for
robot manipulation. In IEEE IRC, 2019.

[21] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A
Al Sallab, Senthil Yogamani, and Patrick Pérez. Deep reinforcement
learning for autonomous driving: A survey. IEEE Transactions on
Intelligent Transportation Systems, 2021.

[22] Miaomiao Liu, Kang Yang, Yanjie Fu, Dapeng Wu, and Wan Du.
Driving maneuver anomaly detection based on deep auto-encoder and
geographical partitioning. ACM Transactions on Sensor Networks, 2023.

[23] Nagesh Yadav and Chris Bleakley. Accurate orientation estimation using
ahrs under conditions of magnetic distortion. MDPI Sensors, 2014.

[24] Bingfei Fan, Qingguo Li, Chao Wang, and Tao Liu. An adaptive
orientation estimation method for magnetic and inertial sensors in the
presence of magnetic disturbances. MDPI Sensors, 2017.

[25] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms. arXiv, 2017.

[26] Artem Molchanov, Tao Chen, Wolfgang Hönig, James A Preiss, Nora
Ayanian, and Gaurav S Sukhatme. Sim-to-(multi)-real: Transfer of low-
level robust control policies to multiple quadrotors. In IEEE IROS, 2019.

[27] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung,
Przemysław Dębiak, et al. Dota 2 with large scale deep reinforcement
learning. arXiv, 2019.

[28] Hang Yan, Qi Shan, and Yasutaka Furukawa. Ridi: Robust imu double
integration. In ECCV, 2018.

[29] Sachini Herath, Hang Yan, and Yasutaka Furukawa. Ronin: Robust
neural inertial navigation in the wild: Benchmark, evaluations, & new
methods. In IEEE ICRA, 2020.

[30] Huatao Xu, Pengfei Zhou, Rui Tan, Mo Li, and Guobin Shen. Limu-bert:
Unleashing the potential of unlabeled data for imu sensing applications.
In ACM SenSys, 2021.

[31] Huatao Xu, Pengfei Zhou, Rui Tan, and Mo Li. Practically adopting
human activity recognition. In ACM MobiCom, 2023.

[32] Aaqib Saeed, Tanir Ozcelebi, and Johan Lukkien. Multi-task self-
supervised learning for human activity detection. ACM IMWUT, 2019.

[33] Linh Kastner, Johannes Cox, Teham Buiyan, and Jens Lambrecht. All-
in-one: A drl-based control switch combining state-of-the-art navigation
planners. In IEEE ICRA, 2022.

[34] Xianzhong Ding, Wan Du, and Alberto E Cerpa. MB2C: Model-based
deep reinforcement learning for multi-zone building control. In ACM
BuildSys, 2020.

[35] Xianzhong Ding, Wan Du, and Alberto Cerpa. OCTOPUS: Deep
reinforcement learning for holistic smart building control. In ACM
BuildSys, 2019.

[36] Xianzhong Ding and Wan Du. DRLIC: Deep reinforcement learning for
irrigation control. In ACM/IEEE IPSN, 2022.

[37] Xiyuan Zhang, Xiaohan Fu, Diyan Teng, Chengyu Dong, Keerthivasan
Vijayakumar, Jiayun Zhang, Ranak Roy Chowdhury, Junsheng Han,
Dezhi Hong, Rashmi Kulkarni, et al. Physics-informed data denoising
for real-life sensing systems. In ACM SenSys, 2023.

