MODES: Multi-sensor Occupancy Data-driven
Estimation System for Smart Buildings

Hamid Rajabi, Zhizhang Hu, Xianzhong Ding, Shijia Pan, Wan Du, and Alberto Cerpa*
{hrajabi2,zhu42,xding5,span24,wdu3,acerpa}@ucmerced.edu
University of California, Merced
Merced, California, USA

ABSTRACT

Buildings account for more than 40% of the energy US primary en-
ergy consumption. Of all the building services, heating, ventilation,
and air-conditioning (HVAC) account for almost 50% of that energy
use. Despite all the resources used, many users are not satisfied
with the comfort conditions in buildings. The main problems for
this lack of balance between energy use and quality of comfort are
the lack of occupancy information, real user comfort feedback, and
easily built zone thermodynamic models available to the Building
Management Systems (BMS). In our work, we focus on occupancy
sensing. While occupancy sensing is very important and there are
multiple different sensing technologies used to address this issue, a
precise and reliable measurement of occupancy remains elusive.

In this paper, we propose MODES, a Multi-sensor Occupancy
Data-driven Estimation System for Smart Buildings. Leveraging on
two different state-of-the-art sensing techniques available in the
literature (vibration and thermal sensors), both being capable of
counting the number of occupants in any particular zone. The two
occupancy estimations are then fused using a data-driven optimiza-
tion process for sensor fusion to create an improved estimate. This
newly updated estimate is further used together with a data-driven
occupancy model as input of a particle filter to provide an even
more accurate estimate. We tested the system in a commercial build-
ing under realistic conditions using real experimental occupancy
data traces with users doing their daily routines. We showed that
MODES can improve occupancy estimation by 40% from vibration
sensors, 19% from thermal sensors, and 30% from state-of-the-art
sensor fusion schemes. Moreover, we show that this is possible with
minimum data training requirements, needing 7 days of training
data to train the fusion system. We also run several EnergyPlus
simulations using an occupancy-driven HVAC controller under
different occupancy errors to show the impact that more accurate
occupancy sensing schemes can have on the overall energy us-
age and quality of comfort and air ventilation. Our study shows
that MODES can save up to 77% of energy use in a building while
improving the quality of comfort by 10%. !

I The full dataset of this study could be found on: https://doi.org/10.15783/08kw-7n74
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1 INTRODUCTION

People spend 87% of their time inside buildings [15, 34], making
buildings an important part of our lives. To be comfortable, we
spend a significant amount of energy. In the US alone, buildings
account for 40% of energy usage [2, 16], and of that 50% of energy
goes to heating, ventilation, and air conditioning (HVAC) [31, 35].
Despite this expense, more than 75% of the occupants in commer-
cial buildings are not satisfied with their thermal comfort [23]. This
is mostly due to a lack of information, more specifically, where
the occupants are and will be (occupancy), what they prefer (com-
fort), and how to condition the different zones (thermodynamic
models) [50]. Concerning occupancy, currently, buildings’ zones
are conditioned based on time constraint assumptions (e.g. occu-
pied and unoccupied hours), whether the zones are occupied or
not, wasting significant amounts of energy. Building Management
Systems (BMS) do not have information on where the occupants
are and will be in the building [50]. Having detailed occupancy
information about the number of people in real-time and in the
near future for each zone allows to control the HVAC systems in
a much more efficient manner [4, 22, 24], conditioning zones for
temperature only when occupied, and adjusting ventilation rates
based on the actual number of occupants. Such HVAC control sys-
tems have been investigated in [6] to lower the peak of energy
demand through adaptive HVAC schedules for each zone. To tackle
this issue, multiple different sensing modalities have been used to
measure occupancy, including CO», PIR, ultrasonic, image, sound,
EM signals, power meters, and computer applications [36, 52]. With
a plethora of multiple sensing modalities available, sensor fusion
techniques [17, 19] that use multiple sensor inputs to try to obtain
better occupancy estimation seem like a promising path. The ma-
jority of related work in the multi-sensor occupancy estimation
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concentrates on early sensor fusion and classification, where different
data features are extracted from the raw sensor values to produce
a combined implicit occupancy estimate [10, 38]. The inaccurate
raw data measured by some commonly available environmental
sensors (e.g., electrical load meters, CO3, temperature, humidity
sensors, etc.) is then modeled and combined to achieve accurate
occupancy estimation. This type of early fusion, however, may not
be computationally-effective, as it may be difficult to handle when
the number of environmental features increases [45].

In this paper, we take a different approach. Instead of trying to
combine the raw signals of all the different sensor modalities for
occupancy sensing, we use the processed output of each occupancy
sensor to produce a more accurate occupancy sensing estimation.
Using a late sensor fusion and classification scheme, allows us to
use the occupancy sensors as is, with no modifications, and use
their processed occupancy estimation in our sensor fusion pipeline
to obtain a more accurate occupancy estimation than any of them
individually. The idea is to leverage the synergistic approach of
multiple different sensors’ error modes to complement each other,
with the final result being better than the sum of their parts.

We developed MODES, a Multi-sensor Occupancy Data-driven
Estimation System for Smart Buildings. The system was tested
with two different state-of-the-art occupancy sensing technologies
available in the literature, using vibration sensors [42] and ther-
mal/PIR sensors [7]. MODES’ collection module consists of thermal
and vibration sensors deployed on the building zones’ ceilings and
floors, respectively. Both sensors provide time-series occupancy
estimations using some classification algorithms applied to the raw
sensor data. MODES combines the two occupancy streams through
a Data-driven Optimization-based Weighted Average (DOWA) al-
gorithm, to calculate the optimal fusion weights between the two
data streams. This occupancy estimation is further refined by using
a non-linear particle filter, capable of tracking multiple concurrent
hypotheses, which uses an occupancy model based on the Blended
Markov Chain (BMC) technique [21]. Our initial results show that
MODES’ occupancy estimation is the best using multiple metrics.

The main contributions of this work are as follows:

e We developed MODES, a late-fusion technique that uses
occupancy estimation from different occupancy sensing sys-
tems (using different sensing modalities), and combines them
to obtain a more accurate occupancy estimation result.

o We deployed two state-of-the-art occupancy sensing systems
based on vibration sensors [42] and thermal sensors [7], on
an office building, testing their performance over two weeks.

e We analyzed the system performance, showing the break-
down of each component in the processing pipeline (vibra-
tion, thermal, DOWA, and particle filter), as well as a state-of-
the-art late fusion technique [13] to highlight the benefits of
MODES under two different scenarios: low zone occupancy
(up to two occupants), and high zone occupancy (up to eight
occupants).

o We performed energy and comfort simulation analysis using
EnergyPlus [1] and an occupancy-based HVAC controller to
measure the impact of our improved occupancy estimation,
highlighting its impact on the energy savings and quality of
comfort trade-offs for buildings operations.
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2 RELATED WORK
2.1 Background

User-based sensing systems, where the users carry tags or devices
have been traditionally used to measure room-level occupancy in
the past [11, 12, 26]. Although such systems may have acceptable
accuracy and performance, they may not be always practical as
people always need to carry a device with them, and therefore they
are intrusive. In addition, they suffer in performance when the user
forgets to carry the tag/device.

User-free schemes [5, 7, 40, 55] do not suffer from the prob-
lems mentioned above. There are many different sensing tech-
nologies, including video-based sensing systems [8, 33, 48], CO-
sensors [32, 41, 55], vibration systems [39, 42, 43], WiFi-based
systems [37, 54], and thermal-based occupancy sensing modali-
ties 7, 40, 53]. Video-based systems have limitations in Non-Line-
Of-Sight (NLOS) environments, in the dark, through smoke, or walls.
They are also computationally intensive to account for complicated
image processing and have deployment costs. In addition, due to
privacy concerns, they cannot be deployed inside the zones where
people do their daily tasks and their deployment is limited to public
hallway spaces inside the buildings. To control ventilation, CO; sen-
sors are commonly deployed in buildings. However, they suffer from
calibration issues, and the delay between the arrival and departure
of people and the associated changes in CO3 level buildups, which
make their use difficult for real-time building control. Moreover,
they are very sensitive to the deployment positions within the zone
(height and specific deployment location) [27]. Many WiFi-based
occupancy estimation systems need users’ movement to be able to
locate them [5]. Therefore, they are less efficient when users are
in more static environments. They also suffer from poor coverage
areas, especially in rooms with high-density furniture or machines,
firewalls, and electromagnetic interference from other devices.

Grof et al. in [28] presented a Pugh Matrix providing a visual
comparison between individual state-of-the-art occupancy sens-
ing techniques based on a set of features and requirements. Each
feature in the matrix is assigned to pick a rating of -1, 0, or 1, in
the order of the worst-to-best state. Those rating values were then
summed up to deliver an evaluation metric for each occupancy
estimation technique. The features evaluated were accuracy, detec-
tion range, sensor coverage area, delay, computation costs, user’s
privacy concerns, ease of installation, and costs. Appendix A shows
a summary of their results. The most two promising techniques are
the Heat-map (i.e., thermal-based) and Vibration sensing systems.
Therefore, we selected these two suitable state-of-the-art solutions
for our evaluation. We picked them since they have complementary
strengths. We provide more details about them below.

2.2 Vibration-based Occupancy Sensing

Various infrastructure vibration-based sensing systems have been
developed to capture indoor occupant information. Their main
mode of operation is to try to capture the interactions of people
with the building. When occupants use the building for their daily
tasks (e.g., walk, move, sit, etc.) their actions induce the surround-
ing objects (e.g., floor, table, wall) to vibrate, and this vibration
information can be captured. This vibration contains the informa-
tion of both the structure of the vibrating objects and the source
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Figure 1: ThermoSense node
deployed in the ceiling. The
enclosure includes a
thermal array and a PIR
sensor.

Figure 2: BOES vibration
occupancy sensing system,
deployed on the floor to
capture footsteps.

of the vibration, i.e. the occupant action. As a result, the captured
vibration can be used to infer the building occupant information,
such as presence [42], occupancy [43], identity [44], activity [30],
and location [39]. The advantages of this sensing modality include
NLOS sensing without much privacy concerns. The main draw-
backs are its limited capability of providing an accurate occupancy
count for a large group of occupants, especially in high occupancy
environments (e.g. more than 4) in a particular zone.

2.3 Thermal-based Occupancy Sensing

The main idea behind thermal-based sensing is the temperature
differential between occupants and their surrounding environ-
ment, to infer the presence of occupants and even the number
of them [7, 40, 49, 53]. These systems are capable of detecting oc-
cupants in large groups both in static (e.g. sitting) and dynamic
(e.g. moving) positions. They do require LOS for detection, but
differently from camera-based systems, they are significantly less
intrusive, since they just measure temperature instead of a full
video. This means that they can be deployed inside the zones where
people work. In our work, we utilize the ThermoSense occupancy
sensing system [7]. It is a combination of a PIR sensor for binary
detection of occupancy, together with a temperature array that
allows counting the number of people in a zone.

2.4 Sensor Fusion for Occupancy Estimation

When multiple occupancy sensors are available, it is possible to
combine their values for a more accurate occupancy sensing es-
timation using sensor fusion techniques. In the literature, sensor
fusion is done by early fusion or late fusion.

Early fusion methods are based on supervised learning tech-
niques, with feature vectors extracted from the raw signals of all
the sensors to classify the desired output [46]. The major weakness
of these approaches is the high complexity due to the high number
of features, requiring significant feature engineering work. In addi-
tion, the classifier, and features must be trained for the very specific
sensors used, meaning the need to develop and train a new early
fusion method when a new sensing modality is added [9, 18, 20, 29].

Late fusion methods have the advantage of not requiring changes
to the occupancy sensors processing pipelines, using only the oc-
cupancy estimation values that each sensor system provides. This
means that the number of features processed by each sensor is re-
duced, reducing complexity. The disadvantage is that features from
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multiple sensors cannot be globally optimized since we are working
with the processed occupancy output of each sensor. The Occu-
pancy Aware Clustering (OAC) work [13] is an example of a late
fusion technique, during which the occupancy estimations based
on different sensors are fused with a linear regression classifier
as part of its late fusion phase. In our work, we use a combina-
tion of data-driven occupancy weighted average (DOWA) together
with a non-linear particle filter that allows us to get a more accu-
rate estimate. Late fusion can correct for the shortcomings of each
commercial sensor input when there is no access to the raw data.

3 MODES SYSTEM OVERVIEW

Figure 3 shows the overall MODES processing pipeline. The inputs
to the left of the figure are the vibration [42] and thermal sensors [7],
which are described in more detail in the sections below. Each of
these sensors performs an independent data-driven classification
based on the raw signals sensed by the sensors, and each sensor
outputs a discrete occupancy estimation value. This data is used
as input to the Data-driven Optimization-based Weighted Average
(DOWA) which fuses both occupancy estimates. DOWA’s output is
further used as input of a particle filter, which uses a data-driven
occupancy model (BMC) to further refine the occupancy estimation.
The final output of the process is a discrete value with a more
accurate occupancy estimation in the zone.

3.1 ThermoSense

We use the ThermoSense [7] thermal occupancy sensor system as
one of our sensor modalities. Figure 1 shows a picture of the system
deployed on the ceiling. This system has 2 sensors, a PIR sensor,
and a thermal array sensor. The PIR helps detect the movement of
occupants and triggers the more energy-expensive thermal array,
which can count the number of occupants underneath. It consists
of an 8 by 8 thermal sensor that can cover an area of approximately
7 square meters (depending on the ceiling height). The sensors
perform an internal complex processing pipeline, including back-
ground subtraction to determine the active pixels in the thermal
array (those that might detect a human), connected components
to determine the different blobs, and then it uses a classifier (e.g.,
linear regression, KNN or ANN) to determine the total number
of occupants based on certain features, such as the total number
of active thermal pixels, the total number of blobs, the size of the
largest blob and more. The final discrete output is the total number
of occupants detected by the sensor. Multiple sensors are deployed
in each zone depending on the size of the area to be covered.

3.2 BOES

We use the Building Occupancy Estimation System (BOES) [42]
as our vibration-based occupancy sensor in our work. Figure 2
shows a picture of the system deployed on the floor. BOES is a
non-intrusive occupancy monitoring solution that uses sparsely-
deployed vibration sensors. The system captures vibration signals
on the floor, then detects footstep events, and finally, recognizes
significant events based on observed walking traits. The covering
area is measured to be between 2 and 4 feet radius from the sensor.
The system has three major modules: event detection, localization,
and tracking. The vibration sensors forward the floor vibration
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Figure 3: MODES Processing Pipeline.

velocity to the step event detection module. Whenever a step event
is detected, it is forwarded to the localization unit. This unit lo-
cates the sequence of step events by comparing the time of peak
step event energy at each sensor. Finally, the tracking unit seeks
for velocity change events between two or three consecutive step
events. Then, the tracking unit combines the velocity events with
the localized step events obtained by the localization unit to update
the final occupancy count. The final discrete output is the estimated
occupancy count in the zone.

3.3 Data-driven Optimization-based Weighted
Average (DOWA)

The sensor fusion process in MODES starts with a weighted average
between two sensor inputs occupancy estimates. Each weight is
defined as a quadratic function of the associated input data. Ob-
taining the optimal weight is a supervised learning problem, with
the optimal coefficients for each weight function obtained through
an optimization process that minimizes the least square error to
ground truth data. The data requirements for convergence to good
parameter estimation are explored in the following section. We
called it a Data-driven Optimization-based Weighted Average or
DOWA. Table 1 describes each parameter in the algorithm. The
process to obtain the optimal parameters is as follows.

The estimated combined sensor data, Z;, is obtained through a
weighted average as follows,

Zi = Wizt + WoZoi (1)
where the weight functions, w; and wy, are defined as follows,
_ 2
wy = azy; +bzgi+c
wy = a'zgi +b'zy;+c )

Note that both weight functions are considered to output positive
reciprocal values (i.e., they sum to one). They are obtained through
optimizing a non-linear Least Square Regression as the objective

function,
T

arg min Z 12; — zi]?

abca.bc i)

®)

Table 1: Table of notations for DOWA algorithm.

parameter  description

Zti occupancy estimate by thermal sensor at time i
Zy,i occupancy estimate by vibration sensor at time i
zi ground truth occupancy at time i

Zi estimated combined sensor data at time i

wi normalized weight function for thermal input
Wy normalized weight function for vibration input
a,b,c optimal weight coefficients for thermal input
a,b,c optimal weight coefficients for vibration input

where T is the total number of data points. The linear constraints
to the objective function are listed below:

(i) wr+wy =1,
(i) 0< wy <1,

(iii) 0< wy < 1. (4)
Note that the values of z; ; and z,; may be the same in some time
samples. In such cases, we do not need an optimization process to
estimate the z;, as it can be equal to either one of the sensor inputs.
However, optimization is needed for the rest of the samples i.e.,
Zti # Zp,i. By defining non-linear weights, we can capture more
complex relationships of the different accuracy that the sensors may
have depending on the total number of occupants being estimated.

Through this methodology, we can obtain an improved occu-
pancy estimate where the occupancy estimate would be closer to
the sensor data which is more similar to the ground truth. However,
not all errors can be corrected, since both occupancy sensors may
produce incorrect occupancy estimates. While DOWA can mini-
mize the error by weighing more heavily on the sensor that is more
accurate for that particular occupancy output, we cannot correct
all the occupancy errors.

3.4 Particle Filter

To further improve the occupancy estimation accuracy, a particle
filter is used. The samples of the posterior occupancy are so-called
particles and are denoted as X; = xtl, x?, x{". The particles are
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Algorithm 1: Particle Filter (X;—1,2¢)

1 initialization: X; = X; = 0;

2 for m=1toM do

3 sample ¥/ from Occupancy Model (%" ;, t);
4 add x" to X; ;

get B from Measurement (z;, X}");

«

¢ end

7 B;" = Normalize (ﬁ;") m=1,..,M;

s for m=1toM do

9 draw x/™ with probability f™ from X;
10 add x7" to X; ;

11 end

12 return X;
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Figure 4: Error distribution of the input measurement.

used to estimate the distribution of the posterior occupancy state.
The process is shown in Algorithm 1. M denotes the number of
particles in the set X;, and time ¢ represents the time in seconds.
The algorithm includes three major phases described below.

3.4.1 Phase 1: sampling from the occupancy model. In our
work, the occupancy model is represented by a Blended Markov
Chain (BMC) as described in [21]. During this phase, M samples
are drawn from the BMC model. Each one of the states x}” |
jump to a possible successor state with probability p(£]|x}",);m =
1,2, ..M.

can

3.4.2 Phase 2: calculation of the particle weights. The weight
Bi" is obtained from the measurement model. This model is calcu-
lated from the distribution of the difference between the ground
truth and the occupancy estimate from the sensor (i.e., DOWA’s
output) in the training set (Figure 4). The weight ;" of a particle is
obtained by calculating the absolute difference between the model
estimation /" and the DOWA’s output z;. Finally, the weight 57"
in a particle m is obtained by dividing the number of cases of that
absolute difference by the total number of cases.

3.4.3 Phase 3: re-sampling. We draw with replacement M sam-
ples from the particle set X;, which is proportional to the weight
ﬁ;" Then, this new particle set X;, is the desired one to determine
the final occupancy of the room at each time step.

The final output of the particle filter is the most accurate occu-
pancy estimate corrected by the best optimal occupancy estimation
values using DOWA and further corrected by using a data-driven
occupancy-based model.
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4 PERFORMANCE EVALUATION

In this section, we proceed to experimentally evaluate the perfor-
mance of our system, including the performance breakdown of all
the MODES components, i.e. vibration, thermal, DOWA and parti-
cle filter, as well as the Occupancy Aware Clustering (OAC) [13],
which is a state-of-the-art late fusion technique.

4.1 Experimental Setup

We deployed 9 thermal and 4 vibration sensor motes in a university
research lab. The lab has an area of approximately 51 m? with a
rectangular shape, containing 8 cubicles total, 4 on each side of the
rectangle’s long sides, a meeting table in the middle with 6 chairs
around it. There are also file cabinets near the entrance of the lab.
During the experimental days, the room started being occupied at
around 10:00 am, and the last occupants left at around 5:00 pm. We
categorized our experimental data into two scenarios: one of low
occupancy (up to 2 occupants) and another one of high occupancy
(up to 8 occupants). We recorded 14 days of weekday data (almost
3 weeks), having 11 days of low and 3 days of high occupancy.

The thermal sensors were deployed on the ceiling covering the
entire lab. To avoid missed detection due to blind spots, we de-
ployed the thermal sensor coverage areas very close to each other.
Therefore, sensor overlapping is inevitable when an occupant is
located at the edge of two adjacent coverage areas. In this case, it
may be counted twice. The vibration sensors were deployed at the
entrance of the lab, acting as a vibration turnstile for all the occu-
pants coming in/out of the lab. The thermal sensors can process the
data locally and transmit with a low-power 802.15.4 radio an occu-
pancy count, which is then aggregated in our back-end server. The
vibration sensors do not have wireless transceivers and they were
connected to the network with Ethernet cables. We also run a time
synchronization protocol to loosely synchronized all the sensors
to less than 150 ms, so we can temporally correlate the events of
the different sensors. We were trying to estimate occupancy every
second, so we got around 400,000 data points in total. Note that this
was done to get statistically significant results. For HVAC building
control, the occupancy estimate should be ~5 to 15 minutes, to
match the actuation interval commonly used in buildings.

4.2 Evaluation Metrics

We evaluated our system using the following performance metrics.

4.2.1  Accuracy. The occupancy estimates by each scheme (i.e.
MODES component) were classified into discrete values. The basic
accuracy metric, in this case, would be the number of correctly
estimated occupancy samples over the total number of examined
data points over time. In terms of positives and negatives, it can
also be defined as:
TP+TN
Accuracy =
TP+TN+FP+FN

®)

where TP, TN, FP, and FN are respectively denoting true positive,
true negative, false positive, and false negative predicted samples.

4.2.2  F-score. Since we have a multi-class classification problem
in this work, we evaluated the estimates based on the F-score (F-
measure) [47]. F-score is used for binary classification, however,
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Figure 5: Data traces showing the sensor inputs and processed data for one day (a) high occupancy and (b) low occupancy.

! I
10:00AM  11:07AM

we can treat our classifier as a One-vs-rest to test its accuracy. The 0.4586 for the high occupancy case, with DOWA’s output expected
F-score is defined as follows: to be closer to the thermal source but with different coefficients
o (i.e. not constant over the input range). DOWA is a developed ver-

F — score = o, Precision x recall ©6) sion of the traditional weighted sum since it prevents the average

precision + recall from floating outside of the two sources’ occupancy ranges. That

is observed in the range [~3:00 PM, ~end] of Figure 5-(a) where
the vibration system is constantly over-counting by 3 occupants,
and then, by adding the thermal scores, which are more precise,
DOWA provides an occupancy score with smaller over-counting

where precision = TP/(TP + FP) and recall = TP/(TP + FN) =
sensitivity. The F-score is a real value between 0 and 1, and the
closer to 1, indicates better precision and recall.

4.2.3  Over/Under-counting (OCR & UCR). We also investigated the i.e., by only 1 occupant. Similarly, the thermal system experiences
over-counting and under-counting ratios. The over-counting ratio over-counting in the range [~2:10 PM, ~2:50 PM] of the high occu-
(OCR) is defined as the ratio of the number of cases in which the pancy scenario, where the vibration system under-counts in that
estimated occupancy is strictly larger than the corresponding true same range. That can be explained by the degraded performance
case, over the total number of examined cases. Similarly, the under- of the vibration system in detecting a larger group of people (up
counting ratio (UCR) is the ratio of the number of cases in which the to 7) and the thermal system overlapping in the sensing coverage
estimated occupancy is strictly smaller than the corresponding true (e.g. a person at the edge of two thermal sensing areas detected by
case, over the total number of examined cases. Mathematically, the both sensors). DOWA tries to smooth this score as well, however,
accuracy, OCR, and UCR ratios for a specific data scheme should the output has still some over-counting due to the larger weight
sum to one, as the accuracy represents the correctly estimated assigned to the thermal input. The final estimate provided by the
samples and OCR/UCR represents the falsely estimated samples. particle filter is more accurate, where the output of DOWA is further
The OCR/UCR metric is useful to determine if there is any bias in combined with the occupancy results obtained by the BMC model.
the occupancy estimator. It is also useful for the interpretation of As it is clear in both scenarios (specifically in high occupancy),
the energy and quality of comfort analysis done later in the paper. the over- and under-counting sensor incidents have mostly been
corrected by the particle filter. Hence, it is expected that the parti-

4.3 Exploratory Analysis cle filter delivers the best accuracy among the four data schemes,
Figure 5 shows two examples of time-series occupancy in two days, which is the final accuracy for MODES. An example of how the
for high (on the left) and low occupancy (on the right) scenarios. The BMC occupancy model may help the particle filter in improving
top figures show the occupancy values for the different raw sensor occupancy accuracy is shown in Figure 5-(a) bottom figure. On the
values for both the thermal and vibration sensors, and compare one hand, in the range [~ 11:50 AM, ~ 12:05 PM] where DOWA
them with the ground truth values. The middle figures show the experiences an absolute occupancy difference of 1, the particle filter
DOWA corrected output, and finally, the bottom figures show the assigns more weight to the measurement model compared to the
final MODES occupancy estimate. BMC model, since there is a large number of total cases in the error
DOWA combines the two input data streams coming from the model with an absolute difference of 1 (see Figure 4). Therefore,
thermal and vibration sources and then outputs discrete occupancy it is expected for the particle filter to be more similar to the mea-
values. In these two cases, DOWA assigns the thermal and vibration surement model in this specific range. On the other hand, in the

weights of 0.7920 and 0.2080 for low occupancy, and 0.5414 and
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Table 2: Performance evaluation for 5 different occupancy data schemes i.e. thermal and vibration occupancy sources,
ordinary least squares (OLS), DOWA, and MODES, under the high and low occupancy scenarios (HO and LO).

MODES DOWA OLS thermal vibration
Accurac HO 0.73 0.56 0.52 0.54 0.33
y LO 0.85 0.65 0.54 0.64 0.51
OCR HO 0.21 0.40 0.32 0.41 0.46
LO 0.10 0.19 0.03 0.19 0.33
HO 0.06 0.03 0.15 0.03 0.20
UCR LO 0.05 0.15 041 0.15 0.15

high occupancy

True Occupancy
000000000
W N OO R W N A O

Predicted Occupancy
(a)
Figure 6: (a) MODES confusion matrix, and (b) MODES F-measure results.

short-range of [~2:40 PM, ~2:45 PM] where the error model experi-
ences an absolute difference of 4 (in which there are few cases), the
particle filter’s output relies on the BMC and assigns more weights
to it. Hence, the output is closer to the predicted by the BMC model,
as is clear in the figure.

4.4 Accuracy

Table 2 presents the classification accuracy, OCR, and UCR as per-
formance metrics evaluated for each data scheme. We also evalu-
ated the Ordinary Least Squares (OLS) linear regression occupancy
model examined in [13, 51] as a late fusion state-of-the-art tech-
nique for comparison. To address the multicollinearity issue in
multiple linear regression models, we applied the Ridge Regression
to make the OLS more robust against inaccurate estimates in re-
gression coefficients [3]. Ridge regression applies a penalty on the
size of coefficients and then minimizes a penalty residual sum of
squares,

argmin ||Z; o0 = Z||* + ||| ™)
w

where w, Z; , Z, and a denote regression coefficients, thermal and
vibration occupancy vectors, ground truth data, and complexity
parameter. The complexity parameter, «, is a positive value such
that the greater value we assign to it, the more robustness against
collinearity we achieve. In this analysis, « is selected to be 10 for
both LO and HO scenarios through trial and error. In our case, the
DOWA component obtains its optimal weight coefficients through
a non-linear least squares regression, which is expected to be more
flexible and fit better compared to the ridge regression. Furthermore,
the optimization process in DOWA is constrained to deliver an
occupancy count in the range of two input data streams (i.e., it does
not float outside that range), while the traditional linear regression,

F-measure
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as a late fusion technique, fails to consider that. Hence, this lack
of range limit may cause additional inaccuracy for the OLS linear
regression. The associated accuracy values in Table 2 reflect this
issue. It is also clear that the final estimate of MODES is improved
over DOWA. Considering a low accuracy of 0.33 for one of the
sources (i.e. vibration), a final accuracy of 0.73 can be acceptable
for a late fusion sensing module like MODES.

Based on Table 2, the occupancy errors by both thermal and
vibration sources have experienced more over-counting in both
high and low occupancy cases. The OLS has significant OCR and
UCR values in both scenarios. Comparing these values with the
ones from DOWA (which is closer to at least one of the input
sources), demonstrates the effect of optimization constraints in
DOWA that restricts the OCR/UCR values to being closer to one
of the sources. With closer DOWA'’s results to the thermal sensor,
we can estimate that DOWA has assigned a higher weight to the
thermal sources with this dataset. Overall, MODES with our dataset
experiences higher OCR values in both high and low occupancy
scenarios compared to the UCR values.

Figure 6-(a) represents the corresponding confusion matrices of
the MODES for the high occupancy scenario. Generally, the perfor-
mance in lower occupancy classes e.g., C1 and Cy, outperforms the
one in high (or medium) levels. The reason for this behavior is in
the pattern of each of the sources. Figure 6-(b) represents the entire
behavior of multiple schemes in each occupancy class based on the
F-score metric for high occupancy cases. Similar to the confusion
matrix, the better performance of MODES is clear in the low occu-
pancy classes. The very low value of DOWA in Cy, together with
a high value for MODES is due to the BMC model in the particle
filter, which is supposed to be assigned with a larger weight for
this occupancy class.



e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

Rajabi, et al.

1 high occupancy . low occupancy
---optimal accuracy
" L e
08! \ retraining accuracy| | osl : |
--------------------------------------------
+retraining accuracy
> = - . = :
8 06 0.85 g 06 0871 ] .
5 5
0.86
Q- 0.8 8.4l i
g 0.4 <04 0850
0.75 ¢ 0.84}
0.2+ ‘ . ‘ ‘ ) : : 02 blasl ‘ ‘ . . ‘ . N .
‘ q'?nln ué@\ul bpalo ?“ola Gin‘g 10»(u I%“alq g“nllo \anla‘ | | \Qu‘\a q’“a\a‘ 500\“ §\Q "S‘\n 6“9\5‘ '\S\a <P°B\E qé‘\a '@s\al |
20% 30% 40% 50% 60% 70% 80% 90% 100% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentage of total training data

(a)

percentage of total training data

(b)

Figure 7: Accuracy as a function of the training data (with a zoom-in view) for (a) high occupancy, and (b) low occupancy.

4.5 Training Data Size

While the system accuracy is an important performance factor, the
amount of training data required for a data-driven system is also
important, since obtaining accurate ground truth data is a very
expensive operation. Due to the non-linear nature of MODES (both
in DOWA and particle filter components), it is expected to have
high variance in the occupancy predictions, while at the same time
being able to capture relevant relations between features and target
outputs. In general, this comes at the expense of requiring more
training data.

Figure 7 shows how the performance of MODES changes with a
larger training set in case of high and low occupancy scenarios over
the entire 3 and 11 days of experiments, respectively. We measure
accuracy as a function of total training data, T, in each scenario.
As Figure 7 shows, about 50% of total training data is required for
the algorithm to get closed to converge to a stable accuracy, in
both scenarios. The accuracy for the high occupancy scenario is
lower than that of the low occupancy by ~12%, and that proves
the higher accuracy of MODES in the lower number of occupants
case. In both occupancy scenarios, the initial accuracy is higher
than the stable value. The reason for the high occupancy scenario is
the initial data traces always start with fewer occupants in the day,
with accuracy dropping as more occupants arrive at the lab. For the
low occupancy scenario though, the initial accuracy is only a few
percentage points from the stable accuracy value. Furthermore, it
happens with a smaller data set (i.e., 10%) and converges faster for
the high occupancy scenario. We note that for more than 20% of
training data, the low occupancy accuracy has a small fluctuation of
around ~1% from the final stable accuracy. The very small standard
deviation bars would also prove this fact. Accuracy stability is
reached with about 40% percent of total data in high occupancy
cases. In general, we see that the low occupancy scenario can reach
stable accuracy levels with a lower size of T compared to the high
occupancy case.

5 ENERGY ANALYSIS

In this section, we try to measure the energy and quality of com-
fort impact that more accurate occupancy estimation can have on
HVAC building control using an occupancy-based controller. The

energy analysis was simulated not only based on the time-series
occupancy information for four data schemes but also based on the
amount of over/under-heating/ventilation as one important input
factor. We split the analysis down to over-counting and under-
counting scenarios to study the effect of over/under-counting on
energy use, temperature conditioning, and ventilation. The input
occupancy to the EnergyPlus simulator is provided by the BMC
occupancy model. The input model to the EnergyPlus includes 1589,
3496, 3484, and 7437 over-counting samples and 1951, 2073, 2425,
and 466 under-counting samples for MODES, DOWA, thermal, and
vibration sources, respectively. The total number of samples was
12078. In the following sections, we discuss the energy use, temper-
ature effectiveness (for quality of comfort), and ventilation results
obtained in our simulations.

5.1 Energy Use

In this section, we analyze the effect of each data scheme on energy
consumption. The building’s HVAC system comprises of a single
duct terminal reheat composed of an Air Handler Unit (AHU) and
Variable Air Volume (VAV) boxes. The AHU includes a fan, heating,
and cooling coils that can change the air’s temperature. The VAV
boxes take this pre-conditioned air from the main duct and control
the airflow provided to each zone. The power consumption sources
include the supply fan, heating coils, and cooling coils. The HVAC
control method is an EnergyPlus built-in rule-based control method
based on occupied and unoccupied zone information. The heating
and cooling setpoints are 21.1°C and 23.9°C in the working time
(07:00 am - 06:00 pm) and 12.8°C and 40°C in the non-working time
(6:00 pm - 07:00 am).

Figure 8 shows the monthly energy consumption in two sce-
narios for four studied data schemes (MODES, DOWA, Thermal,
and Vibration). The EnergyPlus controller operates with occupancy
information provided by each of the occupancy sensing schemes,
with the over- and under-counting values to the ground truth for
each scheme mentioned above. In the case of over-counting, we see
in Figure 8-(a) that the energy use of the vibration-only scheme is
very high since this scheme has the highest over-counting values.
The HVAC system will tend to consume significantly more energy
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Figure 8: Monthly energy consumption (with zoom-in view) for (a) over-counting, and (b) under-counting scenarios.

by trying to condition zones that may be empty, but the vibra-
tion scheme informs that they are occupied. Of all the occupancy
schemes used, we see that MODES provides the best energy results
since it tends to over-count the least of all the schemes tested. In
terms of under-counting, all the schemes have very similar energy
use except for the vibration scheme. Note that by under-counting,
the HVAC controller will tend to float the temperature in zones
that it believes to be empty, even though they are occupied, so the
quality of service will suffer as seen below.

5.2 Temperature Effectiveness

We studied the effects of our data schemes on the building tempera-
ture effectiveness, i.e. the ideal temperature that should be provided
to the occupants for quality of comfort. To be ASHRAE [14] com-
pliant, we must maintain the set-point temperatures to ensure that
—0.5 < PMV < 0.5. PMV (Predictive Mean Vote) is calculated by
Fanger’s equation [25]. PMV predicts the mean thermal sensation
vote on a standard scale for a large group of persons. The American
Society of Heating Refrigerating and Air Conditioning Engineers
(ASHRAE) developed the thermal comfort index by using coding -3
for cold, -2 for cool, -1 for slightly cool, 0 for natural, +1 for slightly
warm, +2 for warm, and +3 for hot. PMV has been adopted by
the ISO 7730 standard. The ISO recommends maintaining PMV at
level 0 with a tolerance of 0.5 as the best thermal comfort. Fanger’s
PMV depends on temperature, humidity, air velocity, occupants’
clothing, and activity. Based on the PMV equation, we get the best
temperature when the PMV is 0. Then, we compare the ideal tem-
perature with the temperature under different data schemes. For
this analysis, we examine the root mean square error (RMSE) of the
zone temperature difference per person between these two values.

Figure 9 shows the product of room temperature RMSE and the
number of occupants for four data schemes under the over-counting
and under-counting scenarios. In the over-counting scenario (a), the
best quality of comfort (i.e. smallest RMSE deviation) is provided by
the vibration scheme. However, this high quality of comfort comes
with a high price tag, since this is achieved by over-conditioning
the spaces and using a lot of energy as seen in the previous section.
Of the remaining schemes, MODES produces the best quality of
comfort (and the lowest energy use as seen before). Both DOWA and
Thermal have very similar quality of comfort results. In the under-
counting scenario, MODES produces the best quality of service of

all the schemes (even with comparable energy use as seen before).
We note that the vibration scheme produces the worst quality of
comfort by a large margin. The energy savings presented in the
previous section come at a significant cost in the quality of comfort,
as the HVAC controller will save energy by not conditioning certain
zones that are in reality occupied, trading off energy use for lower
occupant comfort.

5.3 Ventilation

ASHRAE Standard 90.1 mandates the Demand-Controlled-Ventilation
(DCV) system for densely occupied spaces since the 1999 version
and also requires the DCV system to comply with ASHRAE Stan-
dard 62.1 (ASHRAE 2019). We use the formula in the standard to
constantly calculate the minimum ventilation requirements based
on the number of occupants in each zone, actuated by our HVAC
controller. Figure 10 shows the simulation of annual CO; concen-
tration (ppm) provided by each one of our data schemes in both
over-counting and under-counting cases. In the over-counting sce-
nario shown in Figure 10-(a), all schemes follow a similar pattern,
with higher CO; concentrations in Summer and Winter, and lower
in the Spring and Fall (shoulder seasons) when the controller takes
advantage of the mild weather to use a lot of external air that is
close to the temperature setpoints required. We notice that the
vibration scheme delivers a slightly improved result compared to
others since it is over-conditioning the space as shown above. In the
under-counting scenario shown in Figure 10-(b), we see a similar
case for all the schemes but the vibration scheme. This is because
there is a higher chance of a zone not being ventilated properly
due to incorrect (under-count) information provided by the vibra-
tion sensor. Also, please note that the MODES scheme results in a
slightly lower concentration compared to the thermal and DOWA
schemes.

6 DISCUSSION

The late-fusion occupancy estimation strategy provided by MODES
could be used with other types of occupancy sensors. As it was
shown in the paper, MODES should be able to address most of the
deficiencies of its input modules, especially for the vibration sensor.
However, the degraded performance of the vibration source in our
work could cause significant accuracy degradation. One thing worth
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Figure 10: Monthly CO; concentration simulated by EnergyPlus for (a) over-counting, and (b) under-counting scenarios.

analyzing may be the level of sensor inaccuracies that MODES can
correct in the limit. We leave this analysis for future work.

DOWA tries to optimally fuse the occupancy data between two
input streams, constraining its output to select an optimal occu-
pancy value inside the range of two inputs. However, there are
limitations in further generalizing it to more than two sources. In
this case, each source has to be assigned a quadratic weight function
that can cause higher computational and training costs for MODES.
The development and evaluation of MODES with more than two
occupancy sources are left for future work.

Another point of concern is the amount of training data required.
We have shown that for DOWA and MODES we need only less than
aweek of data to get a good estimate. However, the BMC occupancy
model used in the particle filter requires a minimum of one week,
and possibly more for more accurate results. In addition, occupancy
patterns tend to change with the seasonality of the data, which
means that the BMC model must be retrained as the occupancy
patterns change over the years. We believe that one way to tackle
this issue is to use the data provided by MODES to do the retraining.
While the data is very accurate, it is not as accurate as the ground
truth. However, it may be accurate enough to be able to capture
the seasonality of the data as the occupancy patterns change. We
leave a more detailed analysis of this issue for future work.

7 CONCLUSION

In this paper, we developed MODES; a Multi-sensor Occupancy
Data-driven Estimation System for smart buildings. It applies a

late (decision level) sensor fusion on two occupancy data streams
collected and processed by thermal and vibration sensors, indi-
vidually. The sensor fusion in MODES consists of a Data-driven
Optimization based Weighted Average (DOWA) module that as-
signs more weights to the more reliable data stream in a non-linear
way for different input values. To further improve the final occu-
pancy estimate, we pass DOWA's output to a particle filter with a
Blended Markov Chain (BMC) transition model. Our results show
that MODES could achieve an accuracy of 0.73 and 0.84 in high and
low occupancy scenarios. These outperform the state-of-the-art late
fusion technique i.e. linear regression by 21% and 30%, the thermal
input by 19% and 20%, and the vibration input by 40% and 33%, for
high and low occupancy, respectively. Based on our analysis, about
one week of training data would be sufficient to achieve optimal oc-
cupancy classification accuracy. Our EnergyPlus simulations show
that MODES can save a significant amount of energy use both in
Summer and Winter in a building.
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Table 3: Weight assignment to different features as
presented in Grof et al. [28].
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A SENSOR SELECTION

We have included in this Appendix the main features used to se-
lect the sensor technologies used in our work. Grof§ et al. in [28]
presented a Pugh Matrix providing a visual comparison between

Rajabi, et al.

individual state-of-the-art occupancy sensing techniques based on
a set of features and requirements. Each feature in the matrix is
assigned to pick a rating of -1, 0, or 1, in the order of the worst-to-
best state. Those rating values were then summed up to deliver an
evaluation metric for each occupancy estimation technique. The
features evaluated were as follows:

e Accuracy: The ratio of true positives/negatives in an occu-
pancy estimation process.

e Detection Range: The total range of occupancy counting
by a particular technology.

e Sensor Coverage Area: Coverage is generally referred as
the maximum possible distance in which a sensor could
detect occupants. We considered the blockage and NLOS
issues to be included in this requirement, as well.

e Delay: It refers to the sensor’s delay in occupancy detection.
e Computational costs: It refers to the amount of computa-

tional complexity required by the method to capture, process,
and/or transmit the occupancy data.

e User’s Privacy concerns: As to what level of privacy infor-
mation a user is willing to share.

¢ Ease of installation: The amount of manual effort/time
and knowledge needed to deploy and set up an occupancy
estimation system.

e Cost: It refers to the hardware and installation costs of the
occupancy estimation system.

The authors in [28] assigned a weight to each feature, based
on the importance of each one. Table 3 shows a confusion matrix
through which our features are competing against each other. For
example, in case the Accuracy (A) is considered to be more impor-
tant than the Coverage (C), the associated entry in the matrix is
filled by an A. The weight for a specific feature is then calculated
by counting the total number of entries containing that feature.
Finally, the weighted sum is calculated and entered in Table 4 for
each occupancy estimation technology.

According to the comparison in Table 4, the most two promising
techniques are the Heat-map (i.e., thermal-based) and Vibration
sensing systems. Therefore, we selected these two state-of-the-
art technologies for our work. We picked them since they have
complementary strengths. More details can be found in [28].
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Table 4: Pugh Matrix to compare different individual occupancy estimation technologies as presented in Grof} et al. [28].
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