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Abstract—This paper presents AdaVP, a continuous and real-
time video processing system for mobile devices without offload-
ing. AdaVP uses Deep Neural Network (DNN) based tools like
YOLOv3 for object detection. Since DNN computation is time-
consuming, multiple frames may be captured by the camera
during the processing of one frame. To support real-time video
processing, we develop a mobile parallel detection and tracking
(MPDT) pipeline that executes object detection and tracking in
parallel. When the object detector is processing a new frame,
a light-weight object tracker is used to track the objects in
the accumulated frames. As the tracking accuracy decreases
gradually, due to the accumulation of tracking error and the
appearance of new objects, new object detection results are used
to calibrate the tracking accuracy periodically. In addition, a
large DNN model produces high accuracy, but requires long
processing latency, resulting in a great degradation for tracking
accuracy. Based on our experiments, we find that the tracking
accuracy degradation is also related to the variation of video
content, e.g., for a dynamically changing video, the tracking
accuracy degrades fast. A model adaptation algorithm is thus
developed to adapt the DNN models according to the change
rate of video content. We implement AdaVP on Jetson TX2 and
conduct a variety of experiments on a large video dataset. The
experiment results reveal that AdaVP improves the accuracy of
the state-of-the-art solution by up to 43.9%.

I. INTRODUCTION

Continuous and real-time object detection is essential for

many mobile applications, like traffic monitoring [8] and

augmented reality (AR) [6]. For example, real-time warnings

can be sent to road users automatically by a camera installed

on top of a highway road if any reckless driving maneuvers are

detected. AR-based videos are promising in many applications,

such as tourism, navigation and entertainment [9], which

require to detect and track objects in videos on mobile devices

continuously and in real time, like 30 or 60 Frames Per

Second (FPS). Deep learning has shown superior performance

in object detection and many deep neural networks have been

developed, like YOLO [2] and SSD [10]. Albeit high accu-

racy, they normally involve intensive computation that cannot

be fully supported by the constrained hardware resource of

mobile devices, i.e., they cannot accomplish the processing

of one frame before the next frame is captured, i.e., 33 ms

for 30 FPS. Some solutions offload a part of computation

from mobile devices to the cloud [5], [11], [12]. However,

offloading suffers from privacy concerns and unpredictable

network latency [3].

Recently, some compressed DNN models have been de-

veloped to do object detection task efficiently on mobile

devices without offloading, e.g., YOLOv3-tiny [2] and Faster

R-CNN based on MobileNets [13]. Our experiments show

that YOLOv3-tiny can process a frame on Nvidia Jetson TX2

within 60 milliseconds, but its detection accuracy is low. At

the same time, some light-weight deep learning frameworks

have been developed, such as DeepMon [3] and NestDNN

[14]; whereas they cannot meet the real-time requirement of

video processing. For example, DeepMon achieves continuous

video processing at 1-2 frames per second [3].

In this paper, we develop AdaVP, an accurate and real-

time video processing system on mobile devices. AdaVP

is based on a novel parallel object detection and tracking

pipeline, named as Mobile Parallel Detection and Tracking

(MPDT). Nowadays, many of mobile devices have GPU, like

Samsung Galaxy S10 and Apple iPhone 11, which allow us

to implement DNN-based object detection on GPU and object

tracking on CPU. The two types of operations are executed

independently on two different hardware resources.

At the beginning, we use a general DNN-based object

detector (i.e., YOLOv3 [15] in our current implementation) to

process one frame (frame 0). After the processing of that frame

(e.g., 330 ms), the camera may have already captured several

frames in the buffer (e.g., 11 frames a capture rate 30 FPS).

The object detector will start processing the newest frame in

the buffer (e.g., the 12th frame). At the same time, based on

the objects identified by the object detector, an object track-

ing algorithm will localize these objects in the accumulated

frames (the 1st-11th frames). The tracking accuracy degrades

gradually due to the accumulation of tracking error and the

appearance of new objects. Before the tracking accuracy drops

to too low, the object detector will provide the objects in a new

frame (e.g., the 12th frame) with a high detection accuracy.

By parallel detection and tracking, we can obtain the object

detection results at the maximum frequency and use them to

calibrate the object tracking.

To further improve the accuracy of proposed parallel detec-

tion and tracking pipeline, we adjust the setting of DNN object

detection model at runtime, based on the tradeoff of initial

detection accuracy and tracking accuracy degradation. On the

one hand, a high detection accuracy normally requires inten-

sive computation (i.e., a heavy-weight DNN model) and long

processing time. The latter means more frames accumulated
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in the buffer. One the other hand, the object tracking accuracy

degrades sharply if the video content changes fast, since the

tracking error accumulates fast and many new objects appear

in the accumulated frames. In this case, we need to run a light-

weight object detector in order to calibrate the object tracker

more frequently, although the detection accuracy is relatively

low. On the contrary, if the video content change slowly,

we prefer to use a heavy object detector that provides high

detection accuracy. Although the detection latency is long, it

does not cause the tracking accuracy to degrade much.

In this work, we adapt the DNN model settings by changing

the frame size of YOLOv3 at runtime. YOLOv3 allows us to

change the frame size at runtime without reloading the model.

A large frame size indicates long computation latency and

high detection accuracy. In AdaVP, we measure the video

content changing rate based on the intermediate results of

object tracking. We learn the quantified relationship between

the best frame size and the video content changing rate, based

on a large amount of training data. We then develop a DNN

model setting adaptation algorithm that decides whether to

switch to a different frame size after each object detection.

To perform object tracking, we use the standard good
features to track [16] method to extract good features in the

last DNN detected frame. And then we track these features

in the following frames by the Lucas-Kanade optical flow

method [17]. Due to the tracking and rendering latency of one

frame (from 57 to 70 ms) is larger than the frame interval of

a video (e.g., 33 ms), we also design a scheme to skip some

frames from tracking without impacting the synchronization

with the operations of object detection.

We implement AdaVP on an open mobile platform, Nvidia

Jetson TX2, based on Pytorch deep learning framework.

We use both standard video dataset [18] and some videos

downloaded from public websites [19], [20] to do experiments.

The data we used to train our DNN model adaptation module

contains 105205 frames, and the videos for validation contain

141213 frames. The evaluation results show that AdaVP

improves the accuracy of the state-of-the-art solution by up

to 43.9%. In particular, the parallel detection and tracking

pipeline (MPDT) improves accuracy by up to 21.95%, and the

model setting adaptation algorithm in AdaVP further improves

accuracy by up to 34.1% on top of MPDT.

In summary, the contributions of this work are as follows:

• We develop AdaVP, a mobile video processing system

that achieves high detection accuracy in real time on

mobile devices without offloading.

• We develop a parallel detection and tracking pipeline to

fully utilize the computation resource on current mobile

devices for high detection accuracy.

• We further increase the detection accuracy by adjusting

the DNN model setting at runtime according to the

variation of video content.

• We implement the system on an open mobile platform,

Nvidia Jetson TX2 and extensively evaluate the system

using different types of videos.

II. RELATED WORK

We compare AdaVP with some prior works in terms of

some common features of video processing in Table I.

Real-Time Mobile Vision without Offloading. MAR-

LIN [7] is the latest work about real-time mobile vision

without offloading. It runs object detector and object tracker

in a sequential order. When object tracker starts tracking the

objects in the accumulated frames, object detector stops its

detecting task. MARLIN is inefficient when the video content

becomes complex and varies fast. And it always uses the same

DNN model setting during video processing. Different from

MARLIN, AdaVP runs object detector and object tracker in

parallel and switches among different model settings according

to the changing rate of video content.

Real-Time Mobile Vision with Offloading. Due to the

limited computation, storage and power of mobile devices,

offloading intensive tasks to the cloud to process is a popular

way [1], [5], [12], [21]–[23]. However, mobile vision of-

floading approaches are easily affected by network conditions

and usually receive stale results which degrade processing

accuracy of mobile continuous vision. MCDNN [12] and

DeepDecision [5] design a framework which decides to offload

tasks to the cloud or execute locally according to the network

condition. Glimpse [1] and Liu et al. [6] offload some key

frames to the cloud to do detection and tracks the detected

objects on mobile devices. However, they all suffer from long

transmission latency and privacy concerns. In contrast, AdaVP

focuses on executing object detection task on mobile devices

without offloading.

Mobile Deep Learning. With the development of deep

learning and deep reinforcement learning [24], [25], many

works take effort to reduce latency and computation time

of deep learning algorithms on mobile devices. DeepX [26]

designs a pair of resource control algorithms for deep learn-

ing inference. DeepMon [3] designs a suite of optimization

techniques to accelerate the processing of DNNs on mobile



Fig. 1. Detection latency and accuracy per frame for different frame sizes.
The latency data is presented by the bars, and the accuracy data is shown by
the lined stars.

devices. DeepEye [27] proposes a novel inference software

pipeline that enables multiple CNN models to execute locally

without offloading. DeepCache [4] presents a principled cache

design for deep learning inference in continuous mobile vision.

NestDNN [14] takes the dynamic runtime resources into

account to enable resource-aware on-device deep learning

for mobile vision systems. Naderiparizi et al. designs [28] a

novel architecture that gates wearable vision using low-power

vision modalities to reduce mobile power and data usage.

AdaDeep [29] develops a usage-driven selection framework to

automatically select a combination of compression techniques

for a given DNN. Our work is orthogonal and complementary

to these prior works, it can work on the top of the above works

to make the camera-based mobile applications more efficiently.

III. MOTIVATION

In this section, we conduct experiments on real mobile de-

vices to evaluate the performance of state-of-the-art detection

and tracking models. From the experiment results, we derive

four observations and challenges that motivate our design.

A. Experimental Setting

DNN-based Object Detection. Two DNN-based object

detection pipelines are widely used. The first type detects and

classifies objects by a single DNN object detection model,

e.g., Faster RCNN [30], SSD [10] and YOLO [2]. The second

type first detects the regions of interest using background

subtraction and then classifies each small region using a DNN

classification model, e.g., ResNet [31] and InceptionV4 [32].

The latter sometimes is insufficient if there are many regions

of interests to detect [33]. In this work, we thus adopt a single

DNN model for both detection and classification.

In particular, we use YOLOv3 [15] based on the fol-

lowing considerations. 1) YOLOv3 has an optimal overall

performance (i.e., accuracy and latency) among all the object

detection architectures [15]. On the same hardware, YOLOv3

runs significantly faster than other detection models such as

SSD and R-FCN, and still provides comparable accuracy [34].

2) YOLOv3 scales with a set of input frame sizes, which

further determines the processing time of one frame. We can

change the input frame size of YOLOv3 during the processing

of one video without changing the weights of the model. This

feature allows us to adjust its accuracy and detection latency

without loading a new model.

Fig. 2. Tracking accuracy of two different videos. The content of Video1
changes faster than that of Video2. YOLOv3-608 is used to detect the objects
in the first frame.

Object Tracking Algorithms. When the DNN model is

detecting the objects in one frame, good features to track al-

gorithm is used to extract good feature points from the detected

frame. And then we implement object tracking algorithm based

on standard Lucas-Kanade method [17]. The details of object

tracking can be found in IV. The Lucas-Kanade method is

widely used in some prior works [1], [7]. It can estimate the

positions of feature points in next frame by a local image flow

(velocity) vector (Vx ,Vy).

Besides tracking objects, it is unique in our work to use the

intermediate results of the Lucas-Kanade method to adapt the

DNN model setting. We need to detect how fast does the video

content changes in time. The average moving velocity of key

points between frames is a lightweight and good indicator to

describe the changing rate of video content.

Hardware. We use Nvidia Jetson TX2 mobile development

board as mobile device in this work. TX2 is a representative

open-source mobile platform that can easily establish a mobile

development environment with Jetson TX2 development kit,

like configuring cuDNN, CUDA Toolkit. It includes 6 CPU

cores, 8-GB DRAM and an integrated 256-core Pascal GPU.

In our implementation, we run Ubuntu 16.04 OS on a Nvidia

Jetson TX2 platform. We implement our system based on

Nvidia JetPack [35], Nvidia TensorRT [36] and Nvidia Video

Codec SDK [37].

Performance Metric. We use F1 score to measure the

detection or tracking accuracy of a single frame. F1 score is

the harmonic mean of precision and recall, calculated as:

F1 Score = 2 (
1

Precision
+

1

Recall
), (1)

where precision is the ratio of the number of true positives to

the total number of objects detected by the scheme, and recall

is the ratio of the number of true positives to the total number

of objects in the ground truth. When the detected bounding

box has the same label and sufficient spatial overlap with

the ground truth box, this object will be identified as a true

positive. We use intersection over union (IoU) to measure the

spatial overlap.

IoU =
area(Y ∩G)

area(Y ∪G)
, (2)



TABLE II
THE LATENCY OF DETECTION AND TRACKING FOR ONE FRAME.

Component Time (ms)

YOLOv3 detection latency 230-500

Good feature extraction 40

Tracking latency 7-20

Overlay latency 50

where Y is the detected area of objects from the scheme under

evaluation and G is the ground truth area of objects. The value

of IoU is set to 0.5 in this work.

Generally, a high F1 score indicates better detection and

tracking accuracy, e.g., an object detector is considered to

be perfect when its F1 score is 1. To calculate the false

positive and false negative, we need to know the ground truth,

i.e., labels and accurate locations of objects in frame. In our

experiment, we use the detection results of YOLOv3-704 as

the ground truth. Since the large frame size 704x704 provides

a high detection accuracy.

B. Experiment Results and Observations

YOLOv3 has two versions, i.e., a full version [15] and a

lightweight version YOLOv3-tiny. YOLOv3-tiny is tailored

for mobile devices by trading detection accuracy for short

processing latency [2]. Based on our experiments on 13 video

clips with 141213 frames, YOLOv3-tiny still cannot provide

real-time (30 fps) video processing on mobile device. What

is worse, its average F1 score per frame is as low as 0.3.

Only 0.7% frames achieve a F1 score higher than 0.7. The

official website of YOLO [2] also shows that full YOLOv3 can

provide more than 55.6% higher accuracy than YOLOv3-tiny.

Therefore, we use YOLOv3 not YOLOv3-tiny as the object

detector in this work.

Detection Accuracy and Latency. Figure 1 depicts the

detection latency and accuracy of YOLOv3 under different

settings of frame sizes. In this experiment, we use YOLOv3

to process 4000 frames one by one. We record the F1 score

and the processing latency of each frame. Both the average

processing time and detection accuracy per frame increases

as the frame size of DNN model increases. The processing

time changes from 230 ms to 500 ms. The F1 score per frame

augments from 0.62 to 0.88, if the largest frame size 608x608

among our settings is used.

Observation 1: Even with the lightest model setting (i.e.,
YOLOv3-320 in our implementation), the DNN-based object
detector cannot process a video in real time. To capture the

speed of mobile cameras (like 30 or 60 FPS), after processing

one frame, the object detector must process the newest frame

in the frame buffer that was captured by the camera. The

frames between two processed frames will be skipped by the

object detector. The objects detected by the first processed

frame will be used as the reference by the tracking algorithm

to track these objects until the object detector accomplish

processing the next frame.

Observation 2: For one frame, a larger YOLOv3 frame
size produces higher detection accuracy, but with longer
processing latency, and vice versa. If a large frame size is used,

the detection accuracy is high, which provides the tracking

algorithm with a high initial tracking accuracy; but it also

needs a long processing latency, which means the number of

frames between two YOLOv3 detected frames is large.

Tracking Accuracy. Between two frames that are processed

by the object detector, we track the objects in these frames

based on Lucas-Kanade method. To study the tracking accu-

racy, we use YOLOv3-608 to detect the objects in one frame,

and then run the tracking algorithm to track these objects in the

following frames. We do such an experiment of detection and

tracking 10 times on two different videos respectively. Figure 2

shows the average tracking performance of those two videos.

The content of Video1 changes faster than that of Video2.

For both videos, the initial tracking accuracy is high, as it is

based on the detection results of YOLOv3-608. However, the

tracking accuracy drops below 0.5 after 9 frames for video1

and 27 frames for video2. The tracking accuracy of video1

degrades faster. Because it is hard to accurately estimate the

positions of detected objects in the following fast-changing

frames and more new objects also appear in these frames.

Observation 3: The tracking accuracy drops fast for the
videos in which the content varies fast. Before the tracking

accuracy drops to a low level (e.g., F1 score is below 0.5),

we need to accomplish another object detection to calibrate

the tracking performance to the initial tracking accuracy level.

If the video content varies fast, a small frame size may be

used in YOLOv3 detection, so that its processing time of one

frame is short. Therefore, the YOLOv3 frame size determines

both the initial tracking accuracy and the number of frames the

tracking algorithm needs to track before the next calibration.

It needs to be carefully set according to the online changing

rate of video content.

Tracking Latency. Table II shows the processing time of

tracking one frame. It takes 40 ms on average to extract good

feature points for tracking. We do not need to extract good

features for each frame, but only the DNN detected frames.

It takes 7 ms to 20 ms on average to track all the feature

points from one frame to another. The latency depends on the

number of objects and good features in the frame. Finally, for

each frame, it takes 50 ms to find a good feature for each

object and overlay the bounding boxes on top of all objects

and display the image on the screen.

Observation 4: The tracking latency of one frame is larger
than the frame interval of normal camera video streams. To

provide real-time video processing, we have to skip some

frames from tracking process to catch up the frame capture

speed of mobile cameras.

IV. DESIGN OF ADAVP

In this section, we describe the design of AdaVP. After

a brief overview of AdaVP’s architecture, we will introduce

three key components of AdaVP.

A. System Overview

Figure 3 shows the system architecture of AdaVP. The

frames taken by a mobile camera are first stored in a frame



DNN Model
Adaptation

DNN-based 
Object Detector

Object 
Tracker

Overlay 
Drawer 

Frame 
Buffer

Frame 1, n+1

Frame 2, 3, …, n

Detected 
objects

Tracked 
objects

Video content 
change rate

Input size 

Detected 
objects

Fig. 3. Architecture of AdaVP. Each frame is either processed by the object
detector or by the object tracker. The object tracker takes the objects detected
by the object detector as input. The object detector uses the results of the
object tracker to calculate the video content change rate and further adapt its
DNN model setting. Finally, the processed frame will be passed to the overlay
drawer module to draw the bounding boxes and display the frame on screen.

buffer. The task of AdaVP is to process the frames in the buffer

one by one in real time, so that there is no frame accumulated

in the frame buffer. After AdaVP’s processing, the objects of

each frame will be identified. The results will be passed to

the overlay drawer module to draw the bounding boxes. The

overlaid frames are the views with overlaid augmented objects,

which will be finally displayed on the mobile screen.

AdaVP is mainly composed of three components, i.e.,

DNN-based object detector, object tracker and DNN model

adaptation module. The object detector and the object tracker

form a parallel detection and tracking pipeline. A frame in

the frame buffer is either processed by the object detector or

by the object tracker. When the object detector is processing

a new frame, the object tracker handles all the accumulated

frames before that frame in the buffer. In addition, the object

detector uses the results of the object tracker to calculate the
video content changing rate and adapts its DNN model setting.

With the parallel detection and tracking pipeline, when

object detector accomplishes the processing of one frame,

object tracker takes the objects detected by detector as input

to track these objects in the following frames. At the same

time, the object detector fetches the newest frame from the

buffer and starts detecting the objects in that frame. To support

real-time video processing, when object detector finishes the

processing of the newly fetched frame, object tracker needs

to accomplish the processing of all frames before that frame

(details can be found in IV-B).

To enable an efficient pipeline of parallel detection and

tracking, we will adapt DNN model setting according to the

changing rate of video content. Our DNN model adaptation

module takes the intermediate results of object tracker to

calculate the changing rate of video content. Based on Obser-
vation 3, if the video content changing rate is high, the tracking

accuracy degrades sharply. A new model adaptation algorithm

is developed to adapt the DNN model setting according to the

video content changing rate.

B. Parallel detection and tracking pipeline

Figure 4 illustrates the workflow of our proposed parallel
detection and tracking pipeline and a baseline system. The

baseline system in Figure 4 is a simple implementation of

the latest mobile video processing work, MARLIN [7]. To

avoid offloading, the baseline system executes object detector

and object tracker on mobile devices sequentially. At the

beginning, the object detector fetches frame m0 from frame

buffer and detects the objects in this frame. It takes hundreds

of milliseconds for the DNN model to finish processing of one

frame. During this process, k frames have been accumulated

in the buffer. When the object detector completes its detection,

it delivers the detection results to the object tracker. The latter

will track the objects in the following j frames (from frame
m0+1 to frame m1−1) to catch up. When the system detects

significant scene changes, object detector will be triggered to

detect a new frame, the frame m1. In this system, to catch up

camera feeds, j must be larger than k. If the system is required

to achieve real-time processing, the object tracking time should

be larger than the object detection time. However, if the system

detects significant scene changes before object tracker catches

up, it will trigger DNN object detector immediately and the

system latency will be accumulated. The accumulated latency

will further hurt accuracy.

To reduce the accumulated latency and improve processing

accuracy, we propose MPDT (Mobile Parallel Detection and

Tracking). It is a component in AdaVP that executes object

detector and object tracker in parallel. For MPDT, after the

object detector delivers the detection result of frame n0 to

object tracker, k frames have been accumulated in the buffer.

Object detector fetches the newest frame from the buffer to

do the object detection task, which is frame n1. At the same

time, object tracker start tracking the objects in the frames

from frame n0 + 1 to frame n1 − 1 using the detection

results (object locations, object labels) of frame n0 received

from object detector. While the object detector is detecting

frame n1, object tracker is tracking frame n0+1 to frame
n1−1. In this way, the object detector and object tracker keep

working and working in parallel, the object detection time and

object tracking time are basically same.

To implement MPDT, we use multithreading tech-

niques. There are two technical problems. The first one is

to prevent multiple threads to read/write the shared data at

the same time. The second is the communication among

multiple threads. We use three threads in our system, object

detector thread, object tracker thread and main thread. The

main thread is responsible for scheduling the other two threads

and displaying images. The shared data among these threads

are frame buffer, detected results from object detector and

display image. The shared data cannot be operated by multiple

threads at the same time, we use lock to prevent data from

being operated at the same time. The threads also need to

be notified when they can operate the shared data. We use

event to do the communication among different threads.

To synchronize the object detector and object tracker threads,

once the object detector fetched a new frame, the object tracker

will cancel its tracking tasks after finishing the current task

if there is. But it does not display the current task. This is

because the current task object tracker is doing is the prior

frame to the frame is fetched by object detector, if displays it,

the displayed results will go backwards.



Fig. 4. Two different video processing systems, i.e., a baseline system and the pipeline of parallel detection and tracking.

C. Object Tracker

MPDT needs to continuously track objects (detected by

object detector) across the frames in between two DNN

executions. The number of frames to be handled could be

large, e.g., 20 frames for YOLOv3 with a frame size of

608x608 (YOLOv3-608). To maintain the detection accuracy

and achieve real-time performance, the object tracker needs to

be accurate and lightweight. Typically, there are two steps in

the object tracker, Feature Extraction and Object Tracking.

Feature Extraction. We first extract some features in the

last DNN detected frame and then track these features in

the following accumulated frames. By tracking these features,

we can estimate the moving speed of the objects in the

frame. For a frame, its features can be extracted using a

feature detector and descriptor such as SIFT (Scale-invariant

feature transform), SURF (Speeded-Up Robust Features), good

features to track, FAST (Features from Accelerated Segment

Test) and ORB (Oriented FAST and Rotated BRIEF) [16],

[38], [39]. Generally, the more accurate a feature descriptor

is, the longer processing latency it needs. After evaluating the

overall performance of all the above feature descriptors, we

use the standard good features to track [16] method to extract

the good feature points in the DNN detected frames.

Object Tracking. We then track the extracted good features

in the following frames between two DNN detected frames

using the Optical Flow Based Object Tracking method. Optical

flow captures the pattern of apparent motion of objects, sur-

faces, and edges among frames. We use the well-known Lucas-

Kanade [17] optical flow method to track good features in the

following frames. Because only the feature points inside the

bounding boxes detected by YOLOv3 are useful for the system

to track objects. We only detect and extract feature points

inside the bounding boxes. The feature points extracted from

the same object should have similar moving vector (distance

and direction) between frames, so the moving vector of these

feature points can describe the moving vector of the object.

There are usually multiple objects in one video frame. Dif-

ferent objects may have different moving vectors. To achieve

high tracking performance, instead of calculating an average

moving vector of all objects, we calculate the moving vector

for each object. As a result, the tracking time per frame is

related to the numbers of objects in this frame, i.e., the more

objects a frame has, the longer time it takes to find good

features and calculate the moving vector for each object.

Tracking Frame Selection: The intermediate frames be-

tween two DNN detected frames will be fetched from the

frame buffer into a temporary buffer. In this work, we call the

time of one DNN detection execution as a detection or tracking

cycle. From the motivation experiments and the observation
4, we know that it is not practical to track all the frames

in the temporary buffer, as the feature tracking and overlay

drawing of one frame take more than 33ms (if the frame

rate of the video is 30 FPS). We can leverage the temporal

correlation between adjacent frames in a video, i.e., adjacent

frames usually contain similar content [1], [4] to select a

certain number of frames at regular intervals in the temporary

buffer to do object tracking.

To decide the number of frames to track, we need to

know the processing time of the feature tracking per frame.

However, as explained above, the tracking time per frame

varies according to the number of objects in one frame. MPDT

uses the prior tracking experience to find this number. We

assume the number of objects in two adjacent tracking cycles

does not change much. MPDT counts the number of frames

ht−1 were tracked and the total number of frames ft−1 in the

buffer during the last cycle and calculate the tracking frame

fraction p = ht−1

ft−1
. Then it gets the total number of frames

ft in the buffer during the current cycle and estimates how

many frames can be tracked during this cycle ht = p ∗ ft.
After getting the predicted ht, the system knows how to select

frames at regular intervals. The frames that are not selected

by the tracker use the location and label of objects from the

previous tracked or detected frame [33].

The object tracker uses the last DNN detected frame as

the reference frame, including the labels and bounding box

positions (locations) of all the objects in the reference frame. It

will process the frames selected by the tracking frame selection

method. It outputs the labels and locations of the objects in

these tracked frames. A label is a class as which the DNN

identified the object (e.g., person or dog). A bounding box

represents the position of an object in the frame, which is

represented by a 4-tuple vector (left, top, width, height).

Workflow of Our Object Tracker. Putting all of these

components together, the workflow of our object tracker is as

follows: 1) Receive the detection results (labels and bounding

box positions) of frame n0 from object detector and fetch the

frame n0 + i selected by tracking frame selection method.

2) Extracts all the good feature points inside all the bounding

boxes in frame n0 using good features to track method. 3)

Finds one feature point for each bounding box. 4) Use Lucas-

Kanade method to estimate the optical flow from frame n0

to frame n0 + i. 5) Calculate moving vector for each good



(a) frame 0, by detector (acc:0.79) (b) frame 8, by tracker(acc:0.62) (c) frame 14, by detector (acc:0.81) (d) frame 23, by tracker (acc:0.75)

(e) frame 0, by detector (acc:1) (f) frame 8, by tracker (acc:0.83) (g) frame 14, by tracker (acc:0.73) (h) frame 23, by detector (acc:1)

Fig. 5. Frame accuracy of MPDT using two different model settings (First row: MPDT-YOLOv3-320; second row: MPDT-YOLOv3-608).

feature between frame n0 to frame n0 + i and uses this

value to shift the old bounding box positions to the current

positions in frame n0 + i. 6) Select a new frame in frame

buffer to track.

D. Model Adaptation

From the observation 1-3 obtained in Section III, we know

that different frame sizes of YOLOv3 result in different

detection accuracy and tracking performance. In this section,

we adjust frame size to achieve better accuracy of the proposed

parallel object detection and tracking pipeline (MPDT). After

some preliminary results of MPDT, we introduce the change

rate detection of video content and our adaptation algorithm.
1) Preliminary experiment results: Figure 5 depicts an

example of the detection accuracy of MPDT under two dif-

ferent DNN model settings (MPDT-YOLOv3-608 and MPDT-

YOLOv3-320) on the same video clip. We show the results of

4 frames each.

• Frame 0. Both settings perform object detection for

Frame 0. The detection accuracy of MPDT-YOLOv3-

608 is 1, and the accuracy of MPDT-YOLOv3-320 is

0.79. Because the latter has 3 false positive cases, i.e., it

identifies 2 cars as trucks and 1 truck as car.

• Frame 8. Both settings execute object tracking by taking

the detection results of Frame 0 as reference. The tracking

accuracy of MPDT-YOLOv3-320 drops to 0.62; whereas

the accuracy of MPDT-YOLOv3-608 is still 0.83, as the

latter has an initial detection accuracy of 1.

• Frame 14. MPDT-YOLOv3-320 fetched this frame to

do detection and its accuracy improves to 0.81. MPDT-

YOLOv3-608 is still doing tracking using the detection

results from frame 0, and its accuracy drops to 0.73,

because new vehicles appear.

• Frame 23. MPDT-YOLOv3-320 is performing tracking

and its accuracy drops to 0.75. MPDT-YOLOv3-608

fetched this frame to do detection and its accuracy is

calibrated to 1.

From the above example, we see that MPDT-YOLOv3-608

has a high initial detection accuracy, but its long detection

latency results in a large number of frames to be tracked

(i.e., low tracking accuracy for the last few frames). On the

other hand, MPDT-YOLOv3-320 has a relatively lower initial

detection accuracy, but it calibrates its tracking accuracy more

frequently by performing light-weight object detection. For

some frames, MPDT-YOLOv3-320 has a higher accuracy; but

for the others, MPDT-YOLOv3-608’s performance is better.

From the experiment results in Figure 2, we know that

when the video content changes slowly, the tracking accuracy

degrades slowly. In this situation, MPDT-YOLOv3-608 should

be used to have a high initial detection accuracy. On the other

hand, when the video scenes change fast, MPDT-YOLOv3-

320 should be used, as the tracking accuracy drops fast and

needs to be calibrated more frequently. Therefore, we propose

to dynamically switch the frame size of YOLOv3 at runtime

according to the video content changing rate to achieve the best

performance all the time. We first design a metric to measure

the changing rate of video content. Based on that, we develop

an adaptation algorithm to adjust the frame size at runtime.

2) Video Content Changing Rate: The metric to evaluate

the video content changing rate must be lightweight so that

its computation will not impact the tracking and detection

operation of the real-time system. We propose to leverage

the intermediate result from tracking to measure the changing

rate of video content. By doing so, it almost adds no extra

computation. We use the average motion velocity of all good

features extracted from two adjacent frames (i and i + 1) as

the changing rate of video content. It is calculated as follows.

vi,i+1 =

∣
∣
∣
∑M

k=1 f
k
i (x, y)− fk

j (x, y)
∣
∣
∣

M ∗ (j − i)
(3)

where fk
i (x, y) and fk

j (x, y) are the pixel positions of the

kth feature in the ith frame and the jth frame respectively.

We have M features extracted from these frames. Since we

skip some frames during object tracking, i.e., j − i �= 1,

we normalize the motion velocity of features to the velocity

between two adjacent frames by dividing the results by the

number of frames between the ith and jth frame.

We use the pixel coordinates of features to calculate the

motion velocity. For different cameras with different capture

distance and angles, our motion velocity metric can measure

how fast the objects move in the pixel coordinates of a frame.



A high motion velocity means the video content is changing

fast, i.e., the existing objects moves out of the frame fast and

new objects may appear frequently.

3) DNN Model Setting Adaptation: We design a lightweight

DNN model adaptation module to find the relationship be-

tween the motion velocity and different frame sizes (4 set-

tings in our current implementation, i.e., 320x320, 416x416,

512x512 and 608x608). At runtime, the model adaptation

module decides whether to switch to another frame size (model

setting). Our adaptation scheme also works for selecting the

right model not just model setting at runtime, as long as

these DNN models have complementary detection accuracy

and latency [33]. However, in order to use multiple DNN

models simultaneously, we must pre-load these models, which

requires large memory cost and cannot be supported by mobile

devices. Therefore, we focus on switching to different model

settings in this work. Different model settings have similar

performance as different DNN models.

Generally speaking, a high motion velocity indicates high

video content changing rate and in turn sharp degradation of

object tracking; as a result, a small frame size is necessary

to keep the detection latency small and calibrate the object

tracking more frequently. We assume the relationship between

the motion velocity and 4 frame sizes is linear, i.e., high

velocity requires small frame size. To quantify the relationship,

we need to find 3 velocity thresholds, i.e., v1, v2 and v3. If

v≤v1, the frame size 608x608 will be used. If v1<v≤v2,

v2<v≤v3 or v3≥v, the frame size 512x512, 416x416 or

320x320 will be used respectively.

It is a typical classification problem to find the three velocity

thresholds. We first generate a large amount of training data

and then learn the training data to find the thresholds. In our

current implementation, 32 videos, corresponding to 105205

frames, are used for finding the threshold. The videos include

14 scenarios, including surveillance videos at highway, inter-

section, city street, train station, bus station, and residential

area. Car-mounted videos driving on highway or around down-

town. Mobile camera videos about airplanes, boat, animals in

the wild, racetrack, meeting room and skating rink.

To collect training data, we divide each video into a se-

quence of chunks. Each chunk is 1 second. We run MPDT

to process each video with 4 frame sizes independently. We

calculate an average detection accuracy and an average motion

velocity every second. For each video, we obtain 4 sequences

of pairs (detection accuracy and motion velocity). For each

chunk, by comparing the detection accuracy from 4 frame

sizes, we can find the frame size that provides the highest

detection accuracy. Finally, we generate a training dataset that

is composed of a large number of vectors (motion velocity

and the best frame size). The best frame size is the label of

the corresponding motion velocity. We then use the motion

velocities and their labels to train a classification model to

find the three thresholds under a certain frame size.

To use the adaptation module, we use the motion velocity

measured in the current detection cycle to decide which frame

size of YOLOv3 will be used for the next cycle. The motion

velocity measured in the current detection cycle is measured

based on the current frame size. In our experiments, we find

that for the same chunk of the video, the motion velocity

measured under different frame size settings are similar, but

not exactly the same. It may be because the object bounding

boxes detected by 4 frame sizes are not exactly the same. The

feature points are extracted within the bounding boxes, thus

the extracted feature points are not exactly the same. To solve

this problem, we find the three thresholds for each frame size.

For online adaptation, we use the correct thresholds based on

the frame size of current detection cycle. After training, the

DNN model setting adaptation module can be used to guide

the system to adapt to the change of video content. At runtime,

this module takes the motion velocity and current DNN model

setting as input and outputs the next DNN model setting.

It only takes 8.49× 10−2 ms to extract the motion features

from object tracker and 1.89 × 10−2 ms to switch to a

different DNN model setting. Compared to other components,

our motion feature extraction time and DNN setting switching

time is negligible, but we can improve the system performance

significantly by using these two components. Since we change

the setting of DNN model at runtime, the latency of AdaVP is

not fixed. It varies from 200 ms to 470 ms (one DNN detection

time subtract one frame time). This latency is inevitable in

DNN-based video processing system.

V. IMPLEMENTATION

Framework: We use PyTorch [40] as the deep learning

framework, because it supports dynamic computational graph

building. As we know, a computational graph is normally

built to represent some complex computation in DNN models.

PyTorch can build and compute the computational graph at

the same time, which is different from Tensorflow or Darknet.

Tensorflow or Darknet builds the computational graph in a

static way before computations start. Because our system

intends to be adaptive to the video content, and it will switch

the DNN model setting dynamically during video processing

according to the change of video content. The computational

graph will be built according to the DNN model setting of the

model. When the setting changes, the computational graph

changes as well. So static computation graph building cannot

meet the system requirements.

System implementation: We use multithreaded program-

ming to implement our system. Object detector and Object
tracker are implemented as two threads. CUDA is set up for

the object detector thread, so it is able to use GPU resource at

runtime. The Frame Buffer is implemented by using Queue
data structure. Both object detector and object tracker have

access to it. For object detector, we get the weights file

and cfg file from official darknet [2] website. For object

tracker, we use the good features to track function

provided in OpenCV [41] to detect and extract good feature

points. Because only the feature points inside the bounding

boxes detected by YOLOv3 are useful to track objects, we use

mask for the detected bounding boxes and only detect and

extract feature points inside masks. Compared to extracting



the features across the whole image, only extracting features

within masks saves computation and energy. We use the

calcOpticalFlowPyrLK function to track these feature

points in the following frames. To reduce latency, for each

bounding box, we find one point inside it and calculate the

moving vector of this point to shift the bounding box.

Energy consumption: We use the shell file

Power_Monitor.sh to get the power of GPU, CPU,

DDR and SoC of TX2. We record the power when the TX2

is running AdaVP or other baseline systems and the power

when it does not run anything. The difference between these

two records is the power of AdaVP or other baseline systems.

Then we can calculate the energy consumption by multiplying

power and running time.

Data storage: We save some data at runtime, including

frame number, object class labels and object locations, motions

of video from object detector and object tracker. We use

these data to train our DNN model setting adaptation module

and compute the evaluation accuracy offline. Saving data

at runtime adds extra computational overhead to our video

processing system, which impacts the system performance

slightly. The real performance of AdaVP should be better than

that in our evaluation.

VI. EVALUATION

In this section, we conduct a variety of experiments to

evaluate the performance of AdaVP comprehensively.

A. Experiment Setting

Dataset. To evaluate our system completely, we use the

ImageNet and Videezy video datasets [18], [19] and also

collect some real-world public videos from YouTube [20].

Our dataset includes 45 indoor or outdoor videos that are

recorded by static, moving or car-mounted cameras. These

videos contain various scenarios with multiple objects (e.g.,

cars, trucks, trains, persons, airplanes, animals). Compared to

live camera feed, these videos are much more challenging.

Most of the videos are 30 FPS at a resolution of 1280 x 720

pixels. The length of each video ranges from 15 seconds to 34

minutes. These videos contain 246418 frames in total. We use

105205 frames to train the adaptation module which explores

the relationship between DNN model setting and motion of

video content and 141213 frames to evaluate the system

performance. We conduct all the evaluation experiments on

the entire testing dataset.

Baselines. We compare the performance of AdaVP with

three baseline solutions.

• MPDT. MPDT uses fixed DNN model setting for all

types of videos all the time. We use 4 settings (320x320,

416x416, 512x512 and 608x608) to do the experiments.

These four settings refer to YOLOv3-320, YOLOv3-416,

YOLOv3-512 and YOLOv3-608. AdaVP switches the

model setting of DNN model at runtime according to the

changing rate of video content.

• MARLIN. MARLIN [7] is the latest work that exe-

cutes object detector and tracker sequentially, without

Fig. 6. Performance comparison of AdaVP and baseline systems.

parallel computing scheme. Object detector will be trig-

gered when significant changes detected by video content

changing detector. We implement the idea of MARLIN in

our framework by the same DNN detector, object tracker

and video content change detector as AdaVP. For video

content change detector, we conduct a set of experiments

to find a motion velocity threshold that provides the best

detection accuracy for MARLIN.

• Without Tracking. In this scheme, there is no object

tracker to do tracking. We only use the DNN model to

do detection. The DNN model is always going to fetch

the current video frame. For the skipped frames between

two DNN executions. We use the detection result from

the previous frame [33].

Detection Accuracy. We use F1 score to measure the

detection or tracking accuracy of a single frame. We use

the percentage of frames with certain F1 score threshold to

measure the accuracy of a video [1]. The F1 score threshold

is set as 0.7 as default. For example, if the accuracy of a video

is 0.6, it means there are 60% frames with F1 score higher

than 0.7. For the video set, we use the average percentage per

video as accuracy to demonstrate the evaluation.

B. Overall Performance

Figure 6 depicts the performance of AdaVP and the baseline

systems on the whole testing dataset. From the experiments,

we find AdaVP increases 20.4% to 43.9% accuracy compared

to MARLIN and increases 13.4% to 34.1% accuracy compared

to MPDT under different DNN model settings. The experimen-

tal results show that YOLOv3-512-based system achieves the

best performance compared to other model settings for both

MPDT and MARLIN.

Number of cycles per DNN model setting switching.
Figure 7 presents the cumulative probability of number of

cycles per DNN model setting switching. It is near 50% the

system switches model setting after one cycle. Since AdaVP

switches the DNN model setting at runtime, the duration of

one cycle is not fixed, the number of frames within one cycle

is not fixed (e.g., 10 to 25 frames per cycle). For 90% cases,

the number of cycles per switching is below 20. There are 5%

cases that AdaVP switches to another model setting after 40

cycles. For these cases, the video content changing detector

does not detect significant change of the video content. Thus,

AdaVP keeps using the same DNN model setting.



Fig. 7. Cumulative probability of number of
cycles per DNN model setting switching

Fig. 8. Trigger percentage of every DNN model
setting from AdaVP

Fig. 9. Frame accuracy comparison of AdaVP
and MPDT-YOLOv3-512 (the best baseline)

Fig. 10. Performance comparison
under different thresholds of F1 score

Fig. 11. Performance comparison
under different IoU value

Usage of different model settings. Figure 8 shows the

trigger percentage of different DNN model settings of AdaVP.

From the experiment results, we know that all of the model

settings have been triggered at runtime according to the

video content changing rate. The frame sizes of 512x512 and

608x608 are mostly being used. The usage of the other two

model settings is around 10%.

Frame Accuracy Comparison. Figure 9 demonstrates

the accuracy of AdaVP in frame level. We use MPDT by

YOLOv3-512 as a comparison since it is better than other

model settings we used. Most of time, AdaVP achieves higher

accuracy than MPDT-YOLOv3-512. Around frame 180, the

detection accuracy of MPDT-YOLOv3-512 drops heavily. But

the accuracy of AdaVP is still high, this is because the DNN

model adaptation module decides not to use YOLOv3-512 for

this cycle according to detected change of video content. From

the long run, AdaVP can combine the benefits of different

model settings and achieve higher accuracy.

C. Performance Gain of Parallel Detection and Tracking

From Figure 6, we also know MPDT outperforms MARLIN

and without tracking scheme under each model setting. MPDT

achieves 7.1% to 21.95% higher accuracy than MARLIN

and 2.3% to 37.3% higher accuracy than without tracking

scheme under different model settings. This is because MPDT

keeps doing object detection and tracking concurrently and

calibrates the object tracking by running object detector at

the maximum frequency. However, MARLIN does object

detection and tracking sequentially, which is inefficient for

complex and challenging video scenes.

D. Parameter Setting in AdaVP

F1 Score Threshold. Figure 10 presents the performance

under different accuracy threshold α at 30 FPS. As introduced

in the experiment setting, we use the percentage of frames

with certain F1 score threshold as the accuracy metric for a

video. When we change the threshold α from 0.7 to 0.75, the

accuracy is stricter. But AdaVP still outperforms the baseline

system MPDT. When α is set as 0.75, AdaVP increases the

accuracy of MPDT by 14.9% to 42.6%. The performance gain

is even larger than the case when α is 0.7. From these two

accuracy thresholds, we know AdaVP has more frames with

higher accuracy than the baseline system.

IoU Threshold. We also compare the accuracy with dif-

ferent IoU values under 4 different model settings at 30

FPS. The widely-used IoU is 0.5 in the computer vision

community. Here, we use a stricter IoU threshold, which is

0.6 for comparison. Higher IoU value means true positives

are identified stricter. So, the F1 score per frame decreases

and the overall accuracy decreases. Figure 11 reveals that

AdaVP consistently outperforms the baseline when IoU is 0.6.

It increases the accuracy by 16.1% to 41.8% compared to

MPDT. The performance gain is even higher when IoU is 0.6,

compared with the default 0.5.

E. Energy Consumption and Accuracy

Table III shows the energy consumption of different hard-

ware components (GPU, CPU, SoC and DDR) from different

video processing methods. We choose MPDT and MARLIN

based on both YOLOV3-512 and YOLOv3-320, since they

have the best real-time performance under the setting of

512x512, and they are most energy-efficient under 320x320.

We choose YOLOv3-tiny-320 because it is almost real-time on

TX2 without tracking or skipping any frames. For comparison,

we also execute YOLOv3-320 and YOLOv3-608 continuously

without frame skipping. If we do not consider latency and

execute DNN for every frame, YOLOv3-320 is the most

energy-efficient, and YOLOv3-608 can provide the highest

accuracy for each frame among the model settings we used.

From Table III, we found AdaVP increases by 20.4%

accuracy compared to MARLIN-YOLOv3-512 at the cost of

14.9% more energy. This is because AdaVP targets at im-

proving accuracy, but MARLIN focuses on energy efficiency.

They have different design goals. We also found compared

to the best baseline MPDT-YOLOv3-512, AdaVP increases

the accuracy by 13.4% with 2.3% less energy consumption.

AdaVP even achieves 3.5% more accuracy with 7.95x less

energy compared to YOLOv3-320. We do not consider the 7x

latency from YOLOv3-320 into the accuracy calculation. If we

take the latency into consideration, the accuracy of YOLOv3-

320 even much worse. Though YOLOv3-608 without frame



TABLE III
COMPARISON OF ENERGY CONSUMPTION AND ACCURACY FROM DIFFERENT METHODS

AdaVP
MPDT-

YOLOv3-320
MARLIN-

YOLOv3-320
YOLOv3-tiny-320

(1.8x latency)
YOLOv3-320
(7x latency)

MPDT-
YOLOv3-512

MARLIN-
YOLOv3-512

YOLOv3-608
(10.3x latency)

GPU (w · h) 3.65 2.85 2.22 4.09 36.25 3.53 3.03 68.84

CPU (w · h) 1.88 2.08 1.25 3.14 6.64 2.14 1.84 6.24

SoC (w · h) 0.39 0.34 0.24 0.53 3.60 0.40 0.32 6.62

DDR (w · h) 1.34 1.18 0.82 1.66 11.25 1.36 1.13 20.17

Total (w · h) 7.26 6.45 4.53 9.42 57.74 7.43 6.32 101.87

Accuracy 0.59 0.44 0.41 0.07 0.57 0.52 0.48 0.89

skipping achieves the highest accuracy, it has 10.3x latency

and consumes 14x more energy than AdaVP.

VII. CONCLUSION

This paper presents a continuous and real-time video pro-

cessing system that incorporates object detection and object

tracking on mobile devices without offloading. We develop

MPDT, a parallel detection and tracking pipeline that executes

object detection and tracking concurrently. On top of that, we

design a DNN model setting adaptation module. This module

switches the DNN model settings at runtime according to the

detected video content changes. Experiments show that AdaVP

outperforms the state-of-the-art methods.
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