
Performance Analysis and Characterization of
Training Deep Learning Models on Mobile Devices

Jie Liu, Jiawen Liu, Wan Du and Dong Li
University of California, Merced

{jliu279, jliu265, wdu3, dli35}@ucmerced.edu

Abstract—Training deep learning models on mobile devices
recently becomes possible, because of increasing computation
power on mobile hardware and the advantages of enabling high
user experiences. Most of the existing work on machine learning
at mobile devices is focused on the inference of deep learning
models, but not training. The performance characterization of
training deep learning models on mobile devices is largely unex-
plored, although understanding the performance characterization
is critical for designing and implementing deep learning models
on mobile devices.

In this paper, we perform a variety of experiments on a
representative mobile device (the NVIDIA TX2) to study the
performance of training deep learning models. We introduce a
benchmark suite and a tool to study performance of training
deep learning models on mobile devices, from the perspectives of
memory consumption, hardware utilization, and power consump-
tion. The tool can correlate performance results with fine-grained
operations in deep learning models, providing capabilities to
capture performance variance and problems at a fine granularity.
We reveal interesting performance problems and opportunities,
including under-utilization of heterogeneous hardware, large
energy consumption of the memory, and high predictability of
workload characterization. Based on the performance analysis,
we suggest interesting research directions.

I. INTRODUCTION

Deep learning models have been widely deployed on mobile
devices (e.g., mobile phones and smart home hub) to process
on-board sensing data and enable a variety of mobile applica-
tions (e.g., machine translation, speech recognition, cognitive
assistance and street navigation) [1]–[3]. Those models are
deployed for model inference (not for model training). The
existing work has been conducted to analyze the performance
and resource utilization of deep learning workloads on mobile
devices when those models are deployed for model infer-
ence [4]–[10]. Those studies are important for optimizing the
performance of deep learning models on mobile devices.

Besides model inference, training deep learning models
on mobile devices recently becomes possible, because of
increasing computation power on mobile hardware and the
advantages of enabling high user experiences. In particular,
training deep learning models opens up a new approach
to utilize the computational resources. As the hardware of
mobile devices is increasingly powerful and domain-specific,
especially with the emergence of artificial intelligence (AI)
chipsets and powerful mobile GPU [11]–[14], training deep
learning models is moving from the cloud to mobile devices
to leverage these decentralized computational resources. Fur-
thermore, training deep learning models on mobile devices can

avoid transmitting user data to the cloud as in the traditional
method. The traditional method can cause the breach of user
privacy (even using an anonymous dataset and mixing it with
other data). For applications where the training objective is
specified on the basis of data available on each mobile device,
training on mobile devices can significantly reduce privacy and
security risks by limiting the attack surface to only the device.

Most of the existing work on machine learning at mobile
devices is focused on the inference of deep learning models
(particularly convolutional neural network (CNN) and recur-
rent neural network (RNN)), but not training. The perfor-
mance characterization of training deep learning models on
mobile devices is largely unexplored, although understanding
the performance characterization is critical for designing and
implementing deep learning models on mobile devices.

The recent work studies the performance of training deep
learning models on servers [15]. However, training on mobile
devices and on servers have different requirements, and have
to be studied separately. First, training deep learning networks
should not interfere with the user’s regular operations on
mobile devices; The interference can manifest as unexpected
shorter battery life because of large energy consumption
caused by training deep learning networks, or the extended
latency of the user’s operations. Second, the training data
is likely to be collected and used for training on a daily
basis. For example, to train a deep learning network for image
classification, the system can use images collected per day as
training samples and train the model every day. Third, a mobile
device usually has a small memory capacity (compared with
servers), hence some large deep learning models with tens of
GB memory footprint (e.g., ResNet201 and VGG19) are not
suitable to be trained on mobile devices.

In this paper, we perform a variety of experiments on
a representative mobile device (the NVIDIA TX2) to study
the performance of training deep learning models. Our study
provides insightful observations and reveals potential research
opportunities. In particular, this paper aims to answer the
following research questions.

First, is training a deep learning network on a mobile
device even possible? The existing work on federated learning
has shown preliminary success of training some machine
learning models on mobile devices [16]–[26]. Different from
a typical deep learning model, those machine learning models
are small in terms of memory consumption and model size.
Training deep learning models is known to be compute-

ar
X

iv
:1

90
6.

04
27

8v
2 

 [
cs

.L
G

] 
 7

 S
ep

 2
01

9



intensive and memory-intensive. Traditionally deep learning
models are trained on servers with GPU with thousands of
cores and high memory bandwidth. However, mobile devices
are under recourse constraint, e.g., limited computation power
and relatively small memory capacity. It is unknown whether
and which deep learning models are trainable.

Second, how does training various deep learning models in
mobile devices differ? Deep learning models have shown suc-
cess in a broad range of application domains. Many deep learn-
ing models, such as DenseNet, Inception, ResNet, SqueezeNet
and XceptionNet are related to image classification, which
is one of the most common application domains for deep
learning models. Other kinds of deep learning models, such
as reinforcement learning, Generative Adversarial Network
(GAN) that are used in other application domains such as robot
controls, image generation and natural language processing,
should also be taken into consideration. We aim to explore a
diverse set of deep learning models in our study.

Third, what are the major performance problems when we
train deep learning models on mobile devices? Are those
problems on mobile devices different from those on servers?
Answering the two questions is useful to identify research
problems and train deep learning models more efficiently on
mobile devices.

By conducting extensive experiments with various deep
learning models on a specific mobile device, the NVIDIA
TX2, we find many insightful observations. In summary, we
make the following contributions.

• We introduce a benchmark suite for studying the work-
load of training deep learning models on mobile devices.
The benchmark suite includes four application domains
and includes ten common deep learning models. Those
benchmarks are chosen with the consideration of possible
resource constrained on mobile devices. We make our
benchmark suite open-source and intend to continually
expand it to support various mobile devices.

• We introduce a tool to study performance of training deep
learning models on mobile devices, from the perspectives
of the memory consumption, hardware utilization, and
power consumption. More importantly, the tool can cor-
relate performance results with fine-grained operations in
deep learning models, providing capabilities to capture
performance variance and problems at a fine granularity.

• We reveal interesting performance problems and op-
portunities, including under-utilization of heterogeneous
hardware, large energy consumption of memory, and high
predictability of workload characterization. Based on the
performance analysis, we suggest interesting research
directions.

II. TRAINING DEEP LEARNING MODELS ON MOBILE
DEVICES

Deep learning is a general-purpose method that can be
used to learn and model complicated linear and non-linear
relationships between input datasets and output. Many deep
learning models can be represented as a directed acyclic graph

where nodes of the graph are connected neurons. Embedded
in the graph, there are a number of parameters (e.g., “weights”
and “bias”). Those neurons and parameters are organized
as layers. The process of obtaining the optimal values of
those parameters to reach high prediction accuracy is called
“training”. Training involves many iterations of computation
(sometimes millions of iterations), in order to acquire the
optimal parameters. Each iteration is a training step, and
consists of forward and backward passes. During the back-
ward pass, a backpropagation algorithm is used to optimize
the parameters. The backpropagation algorithm calculates the
gradient of each parameter. Also, the number of parameters
and the corresponding gradients are equal. The intermediate
results, which are generated by each layer, are dominated by
feature maps. The forward pass generates feature maps, and
the backward pass uses them to update the parameters. Hence,
feature maps need to be temporarily stored in the memory
during the forward pass and before the backward pass can
consume them.

The modern machine learning frameworks, e.g., Tensor-
Flow [27] and PyTorch [28], employ a dataflow graph where
the deep learning models training is modeled as a directed
graph composed of a set of nodes (operations). By decompos-
ing a deep learning model graph (discussed above) into a set
of nodes or fine-grained operations (e.g., SoftMax, Sigmoid
and MatMul), these frameworks greatly improve hardware
utilization and system throughput. Training a deep learning
model easily involves a large number of operations. In a single
training step of training deep learning models, there can be
tens of different operations. Each operation can be invoked
hundreds of times, each of which is an operation instance.

III. METHODS

In this section, we introduce the metrics and tools we use
to evaluate the performance of training deep learning models.

A. Evaluation Metrics

CPU utilization. This metric quantifies how frequently
CPU is utilized during deep learning models training. This
metric is defined in Equations 1 and 2.

CPU Core Utilization =
TC
active × 100

Ttotal
% (1)

CPU Avg Utilization =

∑n
i (CPU Core Utilizationi)

n
(2)

Equation 1 is used to calculate the utilization of an in-
dividual CPU core. In Equation 1, Ttotal denotes the total
training time; TC

active indicates the active time of the CPU core.
Equation 2 is used to calculate the average CPU utilization of
all CPU cores. In Equation 2, n is the total number of CPU
cores for training deep learning models, and i is the index of
the CPU core. A larger value of CPU Avg Utilization in-
dicates higher CPU utilization. We want high CPU utilization
to achieve high throughout processing of training operations.

2



Data 
Preprocessing

Model 
Training

Warm	Up
Period

Nvprof
CPU and GPU
Visualization

Nvidia
Tegrastats

Training Logs

Memory 
Usage

Nvidia
Visual	Profiler Memory

Profiler
CPU

Profiler
GPU

Profiler
Energy
Profiler

CPU
Utilization

GPU
Utilization

Energy
Consumption

Operations 
Profiling

Cuda Kernels 
Profiling

Offline Stage Online Stage

TensorFlow
Profiler

Offline Stage

Fig. 1: Profiling tools and profiling workflow.

GPU utilization. This metric quantifies how frequently
GPU is utilized during deep learning model training. This
metric is defined in Equation 3.

GPU Utilization =
TG
active × 100

Ttotal
% (3)

As shown in Equation 3, the GPU utilization is defined
similar to the CPU utilization in Equation 1. We also want
high GPU utilization to achieve high throughout processing
of training operations.

Peak memory consumption. Training deep learning mod-
els can be memory-consuming, as a large amount of param-
eters, derivatives and temporary variables use the memory
space. Some popular deep learning models involve a large
number of parameters. For example, VGG-16 and Resnet-
50 have 138 million and 25 million parameters respectively,
consuming 6.3 GB and 5.8 GB memory (the batch size is
64); SqueezeNet, a small deep learning model designed for
mobile devices has 5 million parameters, consuming 5.7 GB
memory (the batch size is 64). The memory consumption of a
deep learning model sets up a constraint on whether training
the model on a mobile device is feasible. The peak memory
consumption is defined as the maximum memory usage during
the training process.

Energy consumption. Since a mobile device has limited
battery life, reporting energy consumption of training deep
learning models is critical to determine if the training is
feasible within the battery life. Energy consumption is cal-
culated based on Equation 4. During the model training, we
collect power consumption of the mobile device periodically.
In Equation 4, time interval defines how frequently we
collect power data, and Power Consumptioni is the whole
system power of the mobile device collected in a power sample
data i.

Energy =
∑
i

time interval × Power Consumptioni

(4)

Throughput. This metric is used to evaluate the efficiency
of the training process. Throughput in this paper is defined
as how many training samples can be processed and used
for training in one second. For example, when we train
DenseNet40 using the batch size of 4, we can finish five
training steps in one second, and each training step processes
four images (samples). Hence, the throughput for training
DenseNet40 is 20 samples per second.

Idle state ratio for a core. During the training, some CPU
cores can be idle (i.e., the utilization is 0). Idle state ratio for
a core is the percentage of the total training time that the core
is idle.

B. Profiling Tools

We use the existing tools, Nvprof [29], Tegrastats [30] and
TensorFlow Profiler [31], for performance analysis and char-
acterization of training deep learning models on the NVIDIA
TX2. Nvprof is a profiling tool that collects execution time of
computation on CPU and GPU. Nvprof can be used to identify
idle or busy states of CPU and GPU. When used for GPU,
Nvprof can also be used to identify GPU kernel names (hence
the names of operations running on GPU).

Tegrastats is a tool that collects hardware utilization of CPU
and GPU, power consumption of hardware components (CPU,
GPU, and memory) and memory consumption.

TensorFlow Profiler [31] is a tool integrated into Ten-
sorFlow runtime to perform operations statistics, including
operations execution time and dependency between operations.

Nvprof and Tegrastats do not provide APIs that allow
the programmer to trigger or stop profiling within the ap-
plication. Nvprof and Tegrastats can run continuously as a
system daemon and collect system-wide information at any
moment. Simply using Nvprof and Tegrastats cannot meet the
user’s needs, because sometimes the user wants to correlate
the profiling results (energy and memory consumption) with
operations during the training process. The training process
for deep learning models easily involves a large number of
operations (thousands or even millions of operations in a single

3



time step). Collecting the profiling results for operations is
challenging.

We develop a tool to address the above challenge. In
particular, during the training process, we record the start and
end times of all operations at each layer; We also periodically
examine the execution information (including CPU and GPU
utilization, power consumption of hardware components) ev-
ery 10ms (we choose 10ms to control the profiling overhead).
The execution information is dumped into a file with the
implicit timestamp information, due to our periodical profiling
method. After the training process, we associate the execution
information with operations based on timing information (i.e.,
the start and end times of all operations). Figure 1 shows our
tools and profiling workflow.

In Section IV (the section of evaluation results), the results
are presented for all operations as a whole, because that allows
us to easily present the results.

C. Training Deep Learning Models on NVIDIA TX2

We use the NVIDIA TX2 as our evaluation platform. This
platform is an embedded system-on-module (SoM) with a
dual-core NVIDIA Denver2 plus a quad-core ARM Cortex-
A57 (six CPU cores in total), eight GB LPDDR4 and inte-
grated 256-core Pascal GPU (mobile GPU). The GPU has two
streaming multiprocessors (SM), and each SM has 128 cores.
The eight GB memory is shared between CPU and GPU. The
peak power consumption of TX2 is just 15 Watt. TX2 is a
representative mobile platform. It has been commonly used
in self-driving cars, robotics and drones. Many other common
mobile devices, such as Snapdragon 855, Movidius Myriad2
and Nvidia Xavier, have comparable computation capability
and memory capacity. Table II summarizes the major hardware
features of the NVIDIA TX2.

IV. EVALUATION RESULTS

In this section, we present the evaluation results and high-
light major observations.

A. Experiment Setup

Table II summarizes the deep learning models we use for
evaluation. The table also lists those deep learning models that
cannot be successfully trained on TX2 because of the memory
constraint. Among those models, DenseNet100 and NMT can
train for a few time steps, but have segmentation faults later on;
VGG19, ResNet101, ResNet152 and BERT cannot get started
on training at all.

We use TensorFlow v1.13 to train the deep learning models.
Unless indicated otherwise, we use the default configruations
for TensorFlow. Note that we use TensorFlow instead of
TensorFlow Lite, although TensorFlow Lite targets on mobile
devices, because of the following reasons. (1) TensorFlow
Lite only supports model inference, not training. Currently,
there is no training framework especially targeting on training
deep learning models on mobile devices. (2) TensorFlow and
TensorFlow Lite have common implementations for many

TABLE I: The Specifications of NVIDIA TX2

Hardware Specifications
Systems Tegra TX2 SoC
CPU1 Quad-core ARM A57 MPCore

Cache CPU1 L1 I: 128KB, L1 D: 64KB, L2: 2MB
CPU2 Dual-core NVIDIA Denver 2 64-Bit

Cache CPU2 L1 I: 48KB, L1 D: 32KB, L2: 2MB
GPU NVIDIA Pascal GPU (256 CUDA Cores)

Memory 8GB 128-bit LPDDR4 Memory
Storage 32GB eMMC 5.1
Power 7.5W / 15 W

operations (e.g., convolution, matrix multiplication and max-
pooling), especially those operations in the forward pass of
some deep learning models.

When reporting the performance, we skip the first three
training steps, because they are often used by the TensorFlow
runtime system to explore hardware architectures (e.g., cache
capacities and memory access latency) for performance opti-
mization. The performance of the first three training steps is
not representative of other training steps.

B. Performance Analysis

We study the training performance from the following
perspectives: hardware (CPU and GPU) utilization, power
consumption, and peak memory consumption.

Hardware Utilization
Figure 3 shows the CPU and GPU utilization when we train

the deep learning model Inception V1. The figure shows the
hardware utilization for three training steps. Since the NVIDIA
TX2 includes 6 CPU cores, we use six subgraphs to show the
utilization of each of the six cores: the first two subgraphs
show the utilization of two Denver2 cores, and the rest of
them shows the utilization of four A57 cores. We have the
following observations.

Observation 1: The GPU utilization is generally much
higher than the CPU utilization. In most of the times, the GPU
utilization is close to 100%, while each CPU core utilization
ranges from 0% to 60%. Also, when the GPU utilization is
high, the CPU utilization tends to be low, and vice versa.
This indicates that the workload is not balanced well between
CPU and GPU. There seems a lack of effective coordination
between CPU and GPU. This observation is general and exists
in many deep learning models (e.g., Inception V1, DCGAN,
Resnet50, Xception).

Our further investigation reveals that when the GPU utiliza-
tion is low, CPU is either busy with data fetching from storage
(SSD) to main memory, or working on small operations that
are not worth to be offloaded to GPU due to the large data
copy overhead; When the GPU utilization is high, CPU is
working on a few small operations, and most of CPU cycles
are wasted.

Such an observation also exists in servers, but the difference
is that the utilization difference between CPU and GPU on
servers tends to be larger [49], because GPU on servers are
much more powerful than CPU on servers and hence more
operations (after kernel fusing) tend to be scheduled on GPU.

4



Fig. 2: Utilization of GPU and six CPU cores for training Inception V1.

Fig. 3: CPU and GPU utilization of different models.

Observation 2: The utilization of GPU and each core in
CPU is predictable. The utilization shows a periodical pattern
where busy cycles alternate with less busy cycles. A period
of the pattern corresponds to one time step. Across time
steps, such a pattern repeatedly appears. This indicates that
the computation across time steps remains stable and hence
is highly predictable. This observation is consistent with the
existing work that leverages predictability of deep learning
workloads for performance optimization [50], [51].

Such an observation also exists in servers. Since this obser-
vation is determined by the process of training deep learning
models that repeatedly goes through a computation graph (and
not hardware architecture-related), this observation is general
and independent of hardware architectures.

Observation 3: The GPU utilization is sensitive to the batch
size, while the CPU utilization is not. Figure 4 shows the
CPU and GPU utilization when the batch size changes. For
DenseNet, the GPU utilization increases from 81.6% to 96.4%
as the batch size changes from 4 to 64. For SqueezeNet and
ResNet50, the GPU utilization increase from 71.4% to 84.5%
and from 85.6% to 95.6% respectively, as we increase the
batch size. However, for the CPU utilization, there is only
2.1% difference on average across models.

As we increase the batch size, the memory footprint in-
creases and computation for operations also increases. Since
GPU works on most computation-intensive operations during
the training, its utilization also increases as more computation
requires more thread-level parallelism. The CPU utilization

5



TABLE II: Descriptions for deep learning models in our evaluation

Model #Layers Dominant layer #Flops #Parameters Training dataset Batch size Successful training? Application domain
DenseNet40 12 [32] 40 CONV 30M 1M Cifar-10 [33] 1-64 X Computer Vision

ResNet50 [34] 50 CONV 4G 98M Cifar-10 1-64 X Computer Vision
SqueezeNet [35] 40 CONV 837M 5M Cifar-10 1-64 X Computer Vision

VGG16 [36] 16 CONV 4G 134M Cifar-10 1-64 X Computer Vision
XceptionNet [37] 39 CONV N/A 23M Cifar-10 1-64 X Computer Vision
InceptionV1 [38] 22 CONV 30M 5M Cifar-10 1-64 X Computer Vision
Char-CNN [39] 2 LSTM+CONV 23M 1M Shakespeare [40] 1-64 X Natural Language Processing
DCGAN [41] 40 CONV 30M 1M Cifar-10 1-64 X Image Generation
Deep RL [42] 4 CONV N/A N/A Atari 2600 games [43] 1-64 X Robotics Control
AlexNet [44] 8 CONV 727M 60M Cifar-10 1-64 X Computer Vision
VGG19 [36] 19 CONV 20G 548M Cifar-10 1-64 x Computer Vision
BERT [45] 12 Embedding N/A 110M SQuAD [46] 1-64 x Natural Language Processing

ResNet101 [34] 101 CONV 8G 155M Cifar-10 1-64 x Computer Vision
ResNet152 [34] 152 CONV 11G 220M Cifar-10 1-64 x Computer Vision

DenseNet100 [32] 100 CONV 31M 7M Cifar-10 1-64 x Computer Vision
seq2seq [47] 2 LSTM 28G 348M IWSLT15 [48] 1-64 x Natural Language Processing

Fig. 4: CPU and GPU utilization of different models.

Fig. 5: Idle state ratio of six CPU cores for different models.

does not increase very much, because CPU works on small
operations and most of data objects in those operations can

be in caches. Slight increase of memory footprint due to the
increase of the batch size does not cause extra cache misses
and dos not significantly impact execution time.

Such an observation also exists in servers. But the variance
of GPU utilization on servers does not change as much as
that on mobile devices, because GPU on servers have more
cores and hence offers more thread-level parallelism to work
on increased computation as we increase the batch size. [51]

Observation 4: Different cores have different utilization
during the training. TX2 has six heterogeneous cores: Two
of them are Denver2 and four of them are A57. As Figure 5
shows, the utilization of each core changes differently, as the
batch size increases. There is no obvious correlation between
the changes of the utilization across cores. We also notice that
the two Denver2 cores have the highest idle state ratio (as high
as 65%) among all CPU cores, which indicates a large room
for performance improvement.

We do not have the above observation on servers, because
servers (especially x86 servers) usually do not have heteroge-
neous CPU cores [52].

Figure4 shows the GPU utilization of different deep learn-
ing models from different application domains. The models

6



Fig. 6: Energy consumption of different models.

Fig. 7: Power usage of different models in three iterations.

from the domain of computer vision have the similar GPU
utilization, hence we show Inception V1 as a representative
of this domain. We choose other models including LSTM and
DCGAN to represent different application domains.

Observation 5: The GPU utilization varies on different
application domains. In Figure 4, we find the LSTM model
(the domain of natural language processing) has a low GPU
utilization (only about 25%), while the models from the
domain of computer vision (e.g., ResNet) have higher GPU
utilization (95%). Those models from computer vision has
high GPU utilization, because they often employ convolution
which is easy to leverage SIMT (Single Instruction Multiple
Thread) on GPU and reach high GPU utilization. In LSTM,
operations often have dependency and there is lack of available
thread-level parallelism. The observation is consistent with the
existing work [53]–[55] that LSTM has lower utilization than
computer vision models.

Such an observation also exists in servers. Since the GPU
utilization is heavily impacted by the application domain,

Observation 5 is general and independent of hardware archi-
tectures [15].

Power and Energy Consumption
Figures 7 and 6 show power and energy consumption

of GPU, CPU, and memory. Figure 7 shows how power
consumption changes for three training steps. Figure 6 shows
energy consumption for one training step, when the batch
size changes. Energy consumption is calculated based on
Equation 4 with the time interval of 5ms.

Observation 6: GPU is a power-consuming hardware com-
ponent, but for some deep learning model, the memory con-
sumes more power than GPU. Figure 4 shows that for the
domain of computer vision, GPU is the most time-consuming
hardware component when we train deep learning models
(especially CNN models) such as ResNet50 and VGG16. In
those models, GPU consumes 4× and 2× of power con-
sumption of CPU and memory respectively. GPU consumption
can take up to 57.4% of the whole system power. Different
from the above examples, the memory is the most power-

7



consuming hardware component (not GPU), when we train
LSTM. Compared with the CNN models, LSTM has relatively
bad data locality and causes more intensive memory accesses.
As a result, the memory, shared between GPU and CPU, draws
large power consumption.

Such an observation does not exist in servers. In servers,
GPU (including its global memory) is the most power-
consuming (e.g., NVIDIA V100 takes up to 250 Watt (more
than half of the system power) when training LSTM, while
the memory (main memory) takes only 20%-30% of the total
system power.)

Observation 7: The power consumption across training
steps is predictable. Similar to the hardware utilization, the
power consumption of hardware components shows a period-
ical pattern. This pattern is highly predictable across training
steps. Figure 7 shows such results. On servers, we have the
similar observations.

Observation 8: As we increase the batch size, the energy
consumption increases as well, but not in a proportional way.
Figure 6 shows the results to support this observation. As we
increase the batch size from 4 to 64 (16x increase), the energy
consumption of the whole system increases as well. However,
the increase of the energy consumption is at least 2.2x and at
most 10.5x, less than 16x when we change the batch size.

Also, different models show quite different energy con-
sumption. Among the five deep learning models for computer
vision, DenseNet40 is the most energy-consuming one, while
the Squeezenet is the most energy efficient one. The above
conclusion is true as we run the training to completion
(including all time steps). The above observation also exists
in servers.

Consistent with the results of power consumption, we notice
that for some models (e.g., DenseNet40), GPU is the most
energy-consuming one, while for LSMT, the memory is the
most energy-consuming one.

Peak Memory Consumption
The memory is one of the key limiters for deep learning

models training on mobile devices. Some large models, e.g.,
ResNet101 and VGG19, consume more than 10 GB memory
for training, while TX2 only has 8 GB memory. Those models
cannot be trained on TX2. In our study, we aim to study
the impact of the batch size on the memory consumption of
deep learning models. Different from on servers, on mobile
devices we must carefully choose the batch size, not only for
good training accuracy as on servers, but also for acceptable
memory consumption.

For training (especially CNN and RNN), the memory is con-
sumed by the following critical variables: parameters (includ-
ing weights and bias), gradients, input data, and intermediate
data. Among them, the intermediate data is the most memory
consuming. The intermediate data includes the work space and
feature map. The work space is the memory consumed by the
machine learning framework (e.g., TensorFlow or PyTorch).
The memory consumption of the work space varies for differ-
ent frameworks. The feature map, sitting in the middle of two

neighbor layers of a CNN or RNN model, is generated by one
layer, and used as input of the next layer.

Observation 9: Choosing a good batch size is critical to
be able to train deep learning models on mobile devices.
Figure 9 shows memory usage as we change the batch size.
As expected, parameters, input data and gradients remain
constant, as we increase the batch size. But the memory
consumption of intermediate data increases significantly, as we
increase the batch size. For example, for DenseNet40, when
the batch size increases from 4 to 64, the memory consumption
of intermediate data increases from 2.2 GB to 5.9 GB. When
we use larger batch sizes (12nd 256), we run out of memory
for all models.

Throughput
To quantify throughput, we employ a common metric, train-

ing samples per second, instead of using images per iteration
(training step) as in some deep learning models, because of the
following two reasons. First, our collection of deep learning
models includes CNN, RNN and Deep reinforcement learning
models, which means that the training samples for some
models are not images. For example, the training samples
are sentences for some RNNs (e.g., seq2seq). Second, as we
change the batch size for evaluation, the number of training
samples for a training step changes as well, which indicates
that the execution time per training step (iteration) changes.
Hence, using “second” (the time metric) instead of “iteration”
makes more sense.

Observation 10: Throughput increases as the batch size in-
creases. Figure 8 shows the throughput as we change the batch
size. For all models, the throughput increases as the batch size
increases. For example, for ResNet50, the throughput increases
from 9 to 55 samples per second as the batch size increases
from 4 to 64.

The above observation can also be seen in servers [15].
Observation 11: Across models, throughput changes differ-

ently, as we increase the batch size. In Figure 8, the throughput
of the deep reinforcement learning model increases from 889
to 13,618 samples per second as the batch size increases
from 4 to 64 (15.3x speedup). However, for DenseNet and
ResNet50, such throughput speedup is 1.7x and 6.1x, re-
spectively. The deep reinforcement learning model has big
throughput speedup as we increase the batch size. This is
because the training time of the deep reinforcement learning
does not change too much, as we increase the batch size. As
a result, the throughput increases significantly, as we increase
the batch size.

The above observation also exists on servers [15].
Study on modeling accuracy
Training a deep learning model on a mobile device is

different from that on a server, because training samples can
be dynamically generated when the mobile device is used.
For example, training DenseNet40 can be based on training
samples (images) collected at the user’s day time. In this
evaluation, we evaluate a scenario where the user uses a mobile
device to generate 64 images per day, and those images are
used to train a deep learning model (DenseNet40). We also

8



Fig. 8: Throughput of deep learning models.

Fig. 9: Memory usage of deep learning models.

assume that the model, before started to be trained, is already
trained on a server, but needs to be trained further, using the
user’s new training samples. Figure 10 shows the variance
of the accuracy, as we use the above training method for 17
days. As the day 0, the training accuracy is 60.65%, because
the model is already trained on a server.

Observation 12: Training a deep learning model on a
mobile device can slowly increase training accuracy. Fig-
ure 10 reveals that the accuracy of DenseNet40 increases
from 60.65% to 61.32% (using three different batch sizes).
The above observation reveals that using the above method

Fig. 10: The accuracy variance as we increase training samples
at a daily base to train DenseNet40.

does slowly increases the accuracy. In this special scenario,
depending on whether the user has high requirement on the
model accuracy, the training on the mobile device can continue
as more training samples are collected or stop.

V. DISCUSSION AND FUTURE RESEARCH DIRECTIONS

Feasibility of training deep learning models on mobile
devices. Our work demonstrates the feasibility of training
some deep learning models on a mobile device. Most of the
models we study are traditionally trained on a server, and
seldom trained on any mobile device. Those deep learning
models come from various application domains, and have
potential to provide new services for mobile users.

Our observation 9 reveals that choosing an appropriate batch
size has a big impact on whether training a deep learning
model is feasible. Furthermore, it is well known that the
batch size has an impact on the model accuracy. Hence, there
is a non-trivial tradeoff between the training feasibility and

9



accuracy on mobile devices. Such a tradeoff deserves further
study.

Hardware utilization. Mobile devices often offer rich
hardware heterogeneity (e.g., there are two types of CPU cores
in the NIVIDA TX2), richer than x86 servers. However, such
hardware heterogeneity is not leveraged well in the current
machine learning frameworks. This fact is pronounced by two
observations: (1) The utilization of all CPU cores is relatively
low (comparing with GPU); (2) The heterogeneity of CPU
cores is completely ignored. As a result of such fact, the CPU
cycles are wasted and the computation power of specialized
CPU cores (e.g., ARM Cortex-A57) is not fully utilized.

The recent work from Facebook [49] reveals that the perfor-
mance difference between CPU and GPU on mobile devices
is smaller than that on servers. Based on this work and our
observations, we see great opportunities to improve the current
scheduling mechanism in the machine learning frameworks.
Only using GPU for computation-intensive operations may not
be a good scheduling strategy. Instead, balancing workloads on
CPU and GPU to maximize system throughput (for finishing
operations) is a better one.

Energy consumption. Mobile devices are more sensitive
to energy consumption than servers. Training deep learning
models on mobile devices raises concerns on whether the
battery life is good enough to support training. Although the
recent work suggests to train deep learning models when
the mobile device is charged [16], [56], [57], the charging
time can be longer than the training time. The batter may
still be needed to finish training. Hence, minimizing energy
consumption during training is critical. Our observation reveals
that the memory can be more energy-consuming than CPU and
GPU, when we train some deep learning networks. Reducing
energy consumption of the memory is necessary for mobile
devices. How to reduce energy consumption of the memory
without impacting performance (execution time) is an open
topic.

Predictability of workload characterization. The work-
load of training deep learning networks is predictable, which
means execution time, hardware utilization and power con-
sumption show a repetitive pattern across training steps. Such
predictability allows us to apply dynamic profiling on a few
training steps to collect workload characterization, based on
which we guide operation scheduling and power manage-
ment in the future training steps. Predictability of execution
time during the training has been leveraged in the existing
work [50], [51]. We expect to leverage the predictability of
other characterization in the future work.

VI. RELATED WORK

Performance optimization of deep learning model train-
ing. Some recent works [16]–[26], [58] have demonstrated the
promise of training neural networks (NN) on mobile devices.
They are focused on exploring performance optimization in the
perspectives of algorithm and system. For example, Mao et al.
[58] implement a distributed mobile learning system that trains
a neural network by multiple devices of the same local network

in parallel. They design a scheduler to adapt the training
configuration for heterogeneous mobile resources and net-
work circumstances. Bonawitz et al. [16] develop a federated
learning system to achieve NNs training on mobile platforms
using TensorFlow. Some practical issues have been addressed,
e.g., local data distribution, unreliable device connectivity and
limited on-board resources. Konečnỳ et al. [19] use parameter
compression techniques to reduce the uplink communication
costs in federated learning. This paper is orthogonal to the
above works. Our comprehensive model profiling and analysis
can be used to develop more efficient NN training schemes on
mobile devices.

Zhu et al. [15] study the training performance and resource
utilization of eight deep learning model models implemented
on three machine learning frameworks running on servers
(not mobile devices) across different hardware configurations.
However, they do not consider power and energy efficiency. In
contrast, our work is focused on deep learning models training
on mobile devices.

Profiling of deep neural network inference. Many works
have been conducted to analyze the performance and resource
utilization of machine learning workloads (inference, not
training) on mobile devices [4]–[10]. Lu et al. [4] measure
the performance and resource usage of each layer in CNNs
running on mobile CPUs and GPUs. Based on the results
of profiling and modeling, they implement a modeling tool
to estimate the compute time and resource usage of CNNs.
However, they only consider CNNs, but not RNNs or rein-
forcement learning models which are also important for mobile
applications. Hanhirova et al. [5] profile the performance
of multiple CNN-based models for object recognition and
detection on both embedded mobile processors and high-
performance server processors. They find that there exists sig-
nificant latencythroughput trade-offs. Unfortunately, the above
works only study the inference of CNNs. On the contrary, we
profile and analyze the performance and resource requirements
of CNNs, RNNs and deep reinforcement learning models
training on mobile devices.

VII. CONCLUSIONS

Training deep learning networks on mobile devices is
emerging because of increasing computation power on mobile
hardware and the advantages of enabling high user expe-
riences. The performance characterization of training deep
learning models on mobile devices is largely unexplored,
although understanding the performance characterization is
critical for designing and implementing deep learning mod-
els on mobile devices. This paper is the first work that
comprehensively studies the performance of training deep
learning network on a mobile device. Our study is based on
a set of profiling tools on mobile devices, and uses a set of
representative deep learning models from multiple application
domains. We reveal many research opportunities as a result of
our study. We hope that our study can motivate future study
on optimizing performance of training deep learning networks
on mobile devices.

10



REFERENCES

[1] N. D. Lane, P. Georgiev, and L. Qendro, “Deepear: robust smartphone
audio sensing in unconstrained acoustic environments using deep learn-
ing,” in Proceedings of the 2015 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, pp. 283–294, ACM, 2015.

[2] A. Mathur, N. D. Lane, S. Bhattacharya, A. Boran, C. Forlivesi, and
F. Kawsar, “Deepeye: Resource efficient local execution of multiple deep
vision models using wearable commodity hardware,” in Proceedings of
the 15th Annual International Conference on Mobile Systems, Applica-
tions, and Services, pp. 68–81, ACM, 2017.

[3] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “Deepcache: Principled
cache for mobile deep vision,” in Proceedings of the 24th Annual Inter-
national Conference on Mobile Computing and Networking, pp. 129–
144, ACM, 2018.

[4] Z. Lu, S. Rallapalli, K. Chan, and T. La Porta, “Modeling the resource
requirements of convolutional neural networks on mobile devices,” in
Proceedings of the 25th ACM international conference on Multimedia,
pp. 1663–1671, ACM, 2017.

[5] J. Hanhirova, T. Kämäräinen, S. Seppälä, M. Siekkinen, V. Hirvisalo, and
A. Ylä-Jääski, “Latency and throughput characterization of convolutional
neural networks for mobile computer vision,” in Proceedings of the 9th
ACM Multimedia Systems Conference, pp. 204–215, ACM, 2018.

[6] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, and D. Brooks, “Fathom:
Reference workloads for modern deep learning methods,” in 2016 IEEE
International Symposium on Workload Characterization (IISWC), pp. 1–
10, IEEE, 2016.

[7] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-the-art
deep learning software tools,” in 2016 7th International Conference on
Cloud Computing and Big Data (CCBD), pp. 99–104, IEEE, 2016.

[8] “cnn-benchmarks.” https://github.com/jcjohnson/cnn-benchmarks.
[9] “convnet-benchmark.” https://github.com/soumith/convnet-benchmarks.

[10] “DeepBench.” https://github.com/baidu-research/DeepBench.
[11] “Apple A12.” https://en.wikipedia.org/wiki/Apple A12.
[12] “Snapdragon 855.” https://www.qualcomm.com/products/snapdragon-

855-mobile-platform.
[13] “Kirin 980.” https://en.wikichip.org/wiki/hisilicon/kirin/980.
[14] “Nvidia Jetson Xavier.” https://developer.nvidia.com/embedded/buy/jetson-

agx-xavier-devkit.
[15] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Jayarajan, A. Phanishayee,

B. Schroeder, and G. Pekhimenko, “Benchmarking and analyzing deep
neural network training,” in 2018 IEEE International Symposium on
Workload Characterization (IISWC), pp. 88–100, IEEE, 2018.

[16] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan, et al.,
“Towards federated learning at scale: System design,” arXiv preprint
arXiv:1902.01046, 2019.

[17] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” in Advances in Neural Information Processing
Systems, pp. 4424–4434, 2017.

[18] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ram-
age, and F. Beaufays, “Applied federated learning: Improving google
keyboard query suggestions,” arXiv preprint arXiv:1812.02903, 2018.

[19] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[20] H. Zhu and Y. Jin, “Multi-objective evolutionary federated learning,”
arXiv preprint arXiv:1812.07478, 2018.

[21] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[22] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim,
“Communication-efficient on-device machine learning: Federated dis-
tillation and augmentation under non-iid private data,” arXiv preprint
arXiv:1811.11479, 2018.

[23] X. Qi and C. Liu, “Enabling deep learning on iot edge: Approaches and
evaluation,” in 2018 IEEE/ACM Symposium on Edge Computing (SEC),
pp. 367–372, IEEE, 2018.

[24] W. Du, X. Zeng, M. Yan, and M. Zhang, “Efficient federated learning
via variational dropout,” 2018.

[25] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith,
“On the convergence of federated optimization in heterogeneous net-
works,” arXiv preprint arXiv:1812.06127, 2018.

[26] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” learning, vol. 8, p. 9, 2018.

[27] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: a System for
Large-scale Machine Learning,” in USENIX Symposium on Operating
Systems Design and Implementation, 2016.

[28] Adam Paszke and Sam Gross and Soumith Chintala and Gregory
Chanan, “PyTorch.” https://pytorch.org/.

[29] “Nvidia Nvprof.” https://docs.nvidia.com/cuda/profiler-users-
guide/index.html.

[30] “Nvidia Tegrastats.” https://docs.nvidia.com/jetson/l4t/index.html.
[31] “TensorFlow Profiler.” https://www.tensorflow.org/api docs.
[32] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely

connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 4700–4708, 2017.

[33] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” tech. rep., Citeseer, 2009.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[35] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[36] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[37] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1251–1258, 2017.

[38] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1–9, 2015.

[39] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Advances in neural information
processing systems, pp. 649–657, 2015.

[40] A. Singh and X. J. Zhu, eds., Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-
22 April 2017, Fort Lauderdale, FL, USA, vol. 54 of Proceedings of
Machine Learning Research, PMLR, 2017.

[41] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[42] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[43] M. G. Bellemare, J. Veness, and M. Bowling, “Investigating contingency
awareness using atari 2600 games,” in Twenty-Sixth AAAI Conference
on Artificial Intelligence, 2012.

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, pp. 1097–1105, 2012.

[45] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[46] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+
questions for machine comprehension of text,” arXiv preprint
arXiv:1606.05250, 2016.

[47] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, pp. 3104–3112, 2014.

[48] “IWSLT Evaluation 2015,” https://sites.google.com/site/iwsltevaluation2015/.
[49] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,

K. M. Hazelwood, E. Isaac, Y. Jia, B. Jia, et al., “Machine learning at
facebook: Understanding inference at the edge.,” in HPCA, pp. 331–344,
2019.

[50] M. Sivathanu, T. Chugh, S. S. Singapuram, and L. Zhou, “Astra:
Exploiting Predictability to Optimize Deep Learning,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019.

11



[51] J. Liu, D. Li, G. Kestor, and J. Vetter, “Runtime Concurrency Control and
Operation Scheduling for High Performance Neural Network Training,”
in International Symposium on Parallel and Distributed Systems, 2019.

[52] S. Mittal and J. S. Vetter, “A survey of cpu-gpu heterogeneous computing
techniques,” ACM Computing Surveys (CSUR), vol. 47, no. 4, p. 69,
2015.

[53] M. Zhang, S. Rajbhandari, W. Wang, and Y. He, “Deepcpu: Serving
rnn-based deep learning models 10x faster,” in 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18), pp. 951–965, 2018.

[54] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao, “Processing-in-
memory for energy-efficient neural network training: A heterogeneous
approach,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 655–668, IEEE, 2018.

[55] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model parallelism
for deep neural networks,” arXiv preprint arXiv:1807.05358, 2018.

[56] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,”
CoRR, vol. abs/1902.00146, 2019.

[57] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, et al.,
“Communication-efficient learning of deep networks from decentralized
data,” arXiv preprint arXiv:1602.05629, 2016.

[58] J. Mao, Z. Qin, Z. Xu, K. W. Nixon, X. Chen, H. Li, and Y. Chen,
“Adalearner: An adaptive distributed mobile learning system for neural
networks,” in 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 291–296, IEEE, 2017.

12


	I Introduction
	II Training Deep Learning Models on Mobile Devices
	III Methods
	III-A Evaluation Metrics
	III-B Profiling Tools
	III-C Training Deep Learning Models on NVIDIA TX2

	IV Evaluation Results
	IV-A Experiment Setup
	IV-B Performance Analysis

	V Discussion and Future Research Directions
	VI Related Work
	VII Conclusions
	References

