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Inputting a pattern or PIN code on the touch screen is a popular method to prevent unauthorized access to mobile devices.
However, these sensitive tokens are highly susceptible to being inferred by various types of side-channel attacks, which
can compromise the security of the private data stored in the device. This paper presents a second-factor authentication
method, TouchPrint, which relies on the user’s hand posture shape traits (dependent on the individual different posture type
and unique hand geometry biometrics) when the user inputs PIN or pattern. It is robust against the behavioral variability
of inputting a passcode and places no restrictions on input manner (e.g., number of the finger touching the screen, moving
speed, or pressure). To capture the spatial characteristic of the user’s hand posture shape when input the PIN or pattern,
TouchPrint performs active acoustic sensing to scan the user’s hand posture when his/her finger remains static at some
reference positions on the screen (e.g., turning points for the pattern and the number buttons for the PIN code), and extracts
the multipath effect feature from the echo signals reflected by the hand. Then, TouchPrint fuses with the spatial multipath
feature-based identification results generated from the multiple reference positions to facilitate a reliable and secure MFA
system. We build a prototype on smartphone and then evaluate the performance of TouchPrint comprehensively in a variety
of scenarios. The experiment results demonstrate that TouchPrint can effectively defend against the replay attacks and imitate
attacks. Moreover, TouchPrint can achieve an authentication accuracy of about 92% with only ten training samples.
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Fig. 1. Capturing the unique pattern of hand posture shape when input the passcode (i.e.,pattern and PIN code) via active
acoustic sensing.

1 INTRODUCTION
Mobile devices (i.e., smartphones, wearables, and tablets) have become ubiquitous computing and communication
platforms that play an essential role in everyday life. For example, users rely on these mobile devices to store
personal information or to access sensitive online services (e.g., shopping, medical appointments, or banking).
To prevent the smartphone from being used by an unauthorized person, various user verification mechanisms
are proposed for user authentication. Specifically, camera-based facial recognition exhibits both convenience
issues (the need to perform special motions like looking up or blinking) and environmental issues (sensitivity to
brightness and phone orientation). Many commercial mobile devices have also been equipped with specialized
hardware like fingerprint sensors, but they are easily fooled and do not support liveness verification. In contrast,
passcodes (i.e., pattern lock shown in Fig. 1(a) or PIN code shown in Fig. 1(b)) based methods are faster, convenient
and comfortable, which make them still most popular and be selected as the first choice by 73% consumers during
mobile payment [22].
However, recent works show that it is possible to infer these sensitive passcodes via side-channel attacks.

Specifically, the PIN code or pattern can be tracked by motion sensors embedded in wrist-worn devices [24, 25],
nearby smartphones via acoustic sensing [16], or surrounding Wi-Fi signals [17]. Moreover, a camera placed far
away from the user may also be able to infer the passcode [30] only by observing the passcode input motion.
Fortunately, some effort has been made to provide additional second-factor user verification for PIN code or
pattern-based authentication methods. These efforts may be grouped into two categories. The first type of method
recognizes the user’s on-screen behavioral biometrics and extracts the corresponding pressure and velocity
information for user authentication [14, 33]. These methods often lead to less accurate authentication with a
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high false-positive rate due to inevitable behavioral variability between inputs. The second kind of method uses
the multi-touchpoint sensing ability of touchscreens to extract the geometric relationships between multiple
fingers for user authentication [20]. This method is difficult to directly apply as existing passcode systems often
only support single finger entry (e.g., PIN).

The above limitationsmotivate us to design a new user authenticationmethod, called TouchPrint, which provides
second-factor user authentication for the PIN code or pattern-based authentication without any additional
specialized hardware. Our key observation is that the user moves a single finger to touch the screen with his/her
preferred hand posture when she inputs a passcode (i.e., pattern or PIN). The hand posture is always diverse
between users (Fig. 1(d)) and cannot be inferred by the non-visual side-channel attacks (i.e., the method based
on the motion sensor, acoustic sensing, and Wi-Fi signal). Besides, different users have unique hand geometry
biometrics [19], shown in Fig. 1(e), an adversary can still be detected even if imitating the user’s hand posture to
input the passcode after watching him/her inputs actions on-site or in a watch [30]. Therefore, when a user inputs
the pattern or PIN on his/her touch screen, the 3𝐷 shape of the user’s hand posture can be used as an identifier
for authentication due to the distinct characteristics and difficult of imitation. Additionally, the microphone and
speaker embedded on the smartphones can enable active acoustic sensing to scan the surrounding environment
and depicts its spatial characteristics through the analysis of the multipath reflection signals. These principles
inspire the basic idea of TouchPrint: to use active acoustic sensing on the smartphone to scan (Fig. 1(c)) the user’s
hand posture shape when inputting the passcode, and then to extract the unique spatial pattern (dependent on
the hand geometry biometrics and posture type) from the multipath reflection signals for the second factor user
authentication.
Despite its simple idea, three major challenges underlie the design of TouchPrint:

• How to obtain the acoustic fragment when the finger is static in reference positions for reliable multipath
feature extraction? During the passcode input process (i.e., the pattern shown in Fig. 1(a) and the PIN code
shown Fig. 1(b)), the on-screen finger always pauses in several fixed positions (i.e., turning points or digital
numbers) for a short but measurable period. Therefore, the acoustic multipath feature when the finger is
static at these positions (called landmark positions) can be used for authentication. Due to the uncontrollable
delay of acoustic signal transmission, TouchPrint has to perform a continuous active acoustic sensing to
avoid missing such short moments. However, it is insufficient to accurately determine whether the finger is
static at a landmark position only by analyzing the acoustic characteristics (e.g., frequency and phase) of
the collected audio signal. To address it, TouchPrint first uses the finger trace data to estimate the static
finger period and then detects the finger tapping sound position in the acoustic signal. Finally, the acoustic
fragment can be segmented out from the detected tapping sound position (used as the start point) with the
length of the estimated static finger period.

• How to extract the fine-grained multipath effect features from the segmented acoustic fragment to characterize
the hand geometry biometrics and posture distinctness? The segmented acoustic fragment contains various
types of multipath signals that are reflected not only from the hand but also from surrounding objects
in the environment (i.e., the user’s body, other users, furniture and walls). The multipath propagation
from other objects will significantly interfere the user authentication. To overcome this issue, we adopt a
Zadoff-Chu (ZC) sequence-based acoustic signal to eliminate these acoustic multipath interferences and
extract the fine-grained acoustic multipath response, which reflects the hand geometry biometrics and
posture distinctness.

• How to design a reliable, secure authentication method with limited samples? In the actual application
scenario, TouchPrint only requires the user to collect a limited number of samples (i.e., ten samples) in the
registration stage. This is done to enable a friendly user experience, but it poses a challenge of being robust
to the inconstant hand posture or inaccurate touch position in such a small number of training samples.
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To overcome this, TouchPrint adopts an occupancy map-based method to filter the outlier composition
and leverages a vote-based method to combine the results of multiple reference positions for reliable
authentication.

The main contributions of this paper are summarized as follows:

• We design a new authentication method, TouchPrint, which provides second-factor verification for the
existing passcode-based authentication method. TouchPrint performs active acoustic sensing to extract
the fine-grained acoustic multipath effect features corresponding with the hand geometry and postural
information when the finger is static on the touch screen. It does not require any active user intervention
in terms of behavior pattern (speed or pressure of the tapping, swiping) and does not restrict the number
of fingers touching the screen, which makes it compatible with almost all the types of finger touch
interaction-based authentication.

• Our method exploits the finger touch traces (coordinates and timestamps) on the screen for accurate
acoustic signal segmentation (i.e., obtaining the acoustic fragment when the finger is static in reference
positions). It uses the high autocorrelation characteristics of the ZC sequence-based acoustic signal to
extract the multipath response that reflects the hand posture shape distinctness. Then, our method combines
the acoustic multipath response-based results from multiple reference positions to ensure that it is robust
towards inconsistent user gesture inputs, even with a limited training sample size.

• We implement a prototype of TouchPrint on commodity smartphone and conduct extensive experiments
in a variety of scenarios. The experiment results demonstrate that our approach can effectively defend
against replay attacks and observe-imitate attacks. It can achieve an authentication accuracy of about 92%
with only ten training samples.

The remaining parts of this paper are organized as follows. Section 2 presents the design overview of our system.
Section 3 shows how to use the collected touch trace for acoustic signal segmentation. Section 4 describes the
technical details on the acoustic signal generation, hand multipath separation, and multipath effect enrichment.
Section 5 shows the design details of feature extraction and the verification procedure. Section 6 presents our
evaluation results. Section 7 and Section 8 describe the related work and discussion, respectively. Finally, Section 9
concludes the paper.

2 SYSTEM DESIGN
In this section, we first present several adversary models that need to be defended and then provide an overview
of our proposed user authentication method.

2.1 Adversary Models
The proposed user authentication method is designed to resistant against the adversary models described below.

Replay Attack: the pattern or PIN code may be inferred by the non-visual based side-channel attacks (e.g.,
motion sensor, acoustic or Wi-Fi signal). In these types of attacks, the adversary knows only the passcode
information but not the victim’s hand posture and hand biometrics (i.e., finger length and palm-size). Then, the
adversary only can perform a replay attack by inputting the inferred passcode using his/her hand in a random
hand posture.
Observe and Imitate Attack: this attack can be performed when the adversary observes the victim inputting

the pattern or PIN (e.g., direct observation or from the recoded video) and then tries to input the passcode by
imitating the victim’s hand posture.
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Fig. 2. System overview of TouchPrint.

2.2 System Overview
The proposed method aims to provide second-factor verification for the passcode-based user authentication
system. It uses the unique spatial characteristics of a user’s hand posture during the passcode input procedure
as biometric for user authentication. Note that the on-screen finger motions of the pattern and PIN inputs are
different. Specifically, the on-screen finger movement for the pattern case always contains one𝑇𝑜𝑢𝑐ℎ𝐷𝑜𝑤𝑛 event,
one 𝑇𝑜𝑢𝑐ℎ𝑈𝑝 event, and many on-screen traces generated from finger swiping. In general, when arriving at the
turning point of the pattern, the finger is inevitably static for a short period while changing direction. Moreover,
the finger movement during the user input the PIN contains many pairs of 𝑇𝑜𝑢𝑐ℎ𝐷𝑜𝑤𝑛 and 𝑇𝑜𝑢𝑐ℎ𝑈𝑝 events.
Similarly, the finger is inevitably static for a brief instant at each number’s position in the PIN sequence, while
the user taps the number.

To recognize the spatial character of the user’s hand posture, TouchPrint performs continuous active acoustic
sensing and segments the recorded acoustic signal to extract the multipath effect when the finger is static in the
reference positions (i.e., turning points or number buttons). Since the finger movements between the pattern input
and PIN input are different, the procedure to estimate the static finger period is also different. The next several
paragraphs will clearly describe the system overview for the pattern case. The finger static period estimation for
the PIN code case will be described in Section 3.4.
The system overview of TouchPrint is shown in Fig. 2, which includes the following components:

• Input motion sensing: during the pattern input procedure, the finger trace (consisting of the coordinate
(𝑥𝑖 , 𝑦𝑖 ) and timestamp 𝑡𝑖 ) will be collected from the touch screen. TouchPrint uses the speaker and mi-
crophone (located at the top and bottom of the smartphone, respectively) to perform continuous active
acoustic sensing. The trace information will be used to obtain the acoustic signal fragment when the finger
is static in the landmark positions.
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Fig. 3. Pattern input example and its corresponding motion event timeline.

• Acoustic signal segmentation: this component segments out the acoustic fragment during the period
when the finger is static on the landmark positions and comprises three steps. First, the turning point
and the static state detection over the collected touch trace, are used to estimate the static period of the
finger at the turning point. Second, applying a low pass filter helps process the recorded acoustic signal to
accurately detect the sound of finger tapping and locate the event within the collected acoustic samples. At
last, we isolate the acoustic fragment (from the recorded acoustic signal) along with the starting point of
the tapping and estimated static period.

• Touch posture biometrics profiling: the multipath signal related to the input hand posture will be
extracted from the acoustic fragment. Then, the hand geometry’s feature space can be enriched by leveraging
different combinations among the speakers and microphone on the phone.

• Authentication model: the last component comprises two stages: registration and verification. In the
registration stage, TouchPrint requires the user to input a passcode (i.e., PIN or pattern) multiple times
with a consistent hand posture that is comfortable for the user. The corresponding extracted acoustic
multipath effect from these samples will be fed into the feature extraction process to generate the principal
components as the user features that will be stored in the database. In the verification stage, TouchPrint
traverses the feature profiling from the database and authenticates the user based on the similarity between
these features and the new input sample.

3 ACOUSTIC SIGNAL SEGMENTATION

3.1 Intuition
We now describe how to accurately obtain the acoustic fragment when the finger is static on landmark positions.
Fig. 3(a) and Fig. 3(b) are an example of inputting a pattern on the touch screen and the corresponding motion
event timeline. Specifically, the finger first taps the position 𝑃1 on the touchscreen at time 𝑡0. Next, the finger
moves to the position 𝑃2 and then to 𝑃3. Finally, it leaves the touchscreen at time 𝑡5. The entire sequence during
the pattern input procedure contains three static periods (i.e., 𝑡0 ∼ 𝑡1,𝑡2 ∼ 𝑡3, and 𝑡4 ∼ 𝑡5) and two moving periods
(i.e., 𝑡1 ∼ 𝑡2 and 𝑡3 ∼ 𝑡4).

One straightforward way to capture the acoustic multipath effect during the static period is to launch the active
acoustic sensing once the finger stays static on a landmark position. However, the static period may be missed by
the active acoustic sensing due to the uncontrollable touchscreen delay and acoustic sensing delay (i.e., 𝑡6 − 𝑡0
and 𝑡7 − 𝑡0 shown in Fig. 3(b)). To address it, TouchPrint will continuously perform the active acoustic sensing (
i.e, emit the sensing signal and record the acoustic response) until the entire input procedure is completed (i.e.,
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Fig. 4. Finger static period estimation using the touch traces.

the user lifts the finger from the touch screen), so that the entire finger static period can be covered. Therefore,
the collected acoustic samples contain all the fragments that finger is static on landmark positions.

To segment out above acoustic fragments, the finger movement state is first to be determined. In general, the
state of the finger (i.e., static/in motion) could be determined based on the Doppler frequency shift and phase
information of the recorded acoustic signal. However, these methods cannot detect whether the finger stops
at the landmark positions when static (e.g., pauses in the air). Moreover, finger touching can be detected and
localized outside the screen area with the structure sound propagation [21]. But the coarse-grained localization
accuracy is not sufficient to be applied in the scenario of TouchPrint. Therefore, it is unrealistic to get the acoustic
fragment, corresponding the finger is static in reference positions, purely based on the recorded acoustic signal.
Instead, TouchPrint uses the finger trace data from the touch screen to estimate the static finger period for

acoustic signal segmentation. Our reasoning for this is threefold. First, the finger trace data is naturally obtained
in the scenario of finger-touching authentication. Second, the finger state (static/in motion) can be easily detected
based on the touch coordinate changes. Specifically, the collected finger touch coordinate does not change during
the period that the finger is static. Third, the duration time of the static period can be accurately estimated via
touchscreen sensing since the touchscreen delay from interaction to feedback has millisecond-level lag (i.e., 𝑡6 − 𝑡0
shown in Fig. 3(b)) and stable delay jitter [5].
In addition, the finger motion of a 𝑇𝑜𝑢𝑐ℎ𝐷𝑜𝑤𝑛 event at time 𝑡0 will generate an acoustic response when the

finger hits the screen. Then, the𝑇𝑜𝑢𝑐ℎ𝐷𝑜𝑤𝑛 event can be detected from the recorded audio based on this acoustic
response. Therefore, the acoustic fragment can be segmented out from the detected 𝑇𝑜𝑢𝑐ℎ𝐷𝑜𝑤𝑛 event position
(used as a start point) with the length of the estimated static finger period. Note that our segmentation method
only refers to the detection of the 𝑇𝑜𝑢𝑐ℎ𝐷𝑜𝑤𝑛 event sound. We do not need to detect the 𝑇𝑜𝑢𝑐ℎ𝑈𝑝 sound since
the timestamp in the recorded acoustic signal can be determined by combining the 𝑇𝑜𝑢𝑐ℎ𝐷𝑜𝑤𝑛 event timestamp
and the duration of the static period (estimated from the finger traces). The following subsection will introduce
the technical details of both finger static period estimation and finger tapping sound detection. The case of
segmentation for the PIN input is also discussed.

3.2 Finger Static Period Estimation
The collected touch trace coordinates (𝑥𝑖 , 𝑦𝑖 ) and time samples (𝑡𝑖 , 1 ≤ 𝑖 ≤ 𝑛) are used to estimate the finger static
periods. Since finger movement yields change for the trace coordinates, we need to detect the turning point of
the time-position series for the 𝑋 and 𝑌 axes separately. As shown in Fig. 4(a), the sampling frequency of touch
samples is nonconstant. Specifically, the sampling frequency is decreased when the finger is static but increases
when it is in motion. Therefore, we first apply a linear interpolation to the time-position series of the 𝑋 and 𝑌
axes. These results are shown in the upper figure of Fig. 4(b) and Fig. 4(c). Next, we calculate the slope for the
magnitude of interpolated series, which is shown in the lower figure of Fig. 4(b) and Fig. 4(c).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 3, Article 75. Publication date: September 2020.



75:8 • Chen et al.

Time

Tapping event

A
m
p
lit
u
d
e

(a) Finger tapping event
Time

A
m

p
lit

u
d

e Start point of tapping

Segment 1 Segment 2 Segment 3

Original signal

(b) Tapping start point detection

Fig. 5. Finger tapping sound detection and acoustic signal segmentation.

In the slope figure for the time-position series of the 𝑋 and 𝑌 axes, the peak area corresponds with the period
when the finger is in motion. Then, the start and end times of the period can be determined by detecting the root
point (marked in red) before and after each peak. Notably, the finger’s micro-shake motion always generates a
peak in the slope of the time-position series, which can lead to an incorrectly detected period. To eliminate these
errors, we apply a threshold-based method for determining peaks. Specifically, we first filter the peaks whose
values are less than 10% of the highest detected peak, and then remove any detected root point pairs when the
coordinate changes are less than a threshold, which set as half the distance between adjacent points in the pattern
(roughly 200 pixels). Note that the detected turning points belong to the interpolated time-position series. We
then transfer these identified turning points to the original time-position series by finding the nearest samples
with the minimum Euclidean distance.

Next, we combine the turning point times 𝑇𝑥 and 𝑇𝑦 (detected from the original time-position series of the
𝑋 and 𝑌 axes) and use these times for the static period division. These turning points are combined with the
starting sample time 𝑇1 (𝑇𝑜𝑢𝑐ℎ𝐷𝑜𝑤𝑛 event) and ending sample time 𝑇𝑛 (𝑇𝑜𝑢𝑐ℎ𝑈𝑝 event) of the original series.
The union of the set, denoted as

{
𝑇1,𝑇𝑥 ,𝑇𝑦,𝑇𝑛

}
will be used for static period division with the following process:

1) Remove duplicate elements and sort in ascending order. 2) Traverse the set using a sliding window (use step
size of 1 and a window length of 2). In each sliding window, denote the left element as 𝑡𝑙 and the right element as
𝑡𝑟 . 3) The period [𝑡𝑙 , 𝑡𝑟 ] will be detected as the finger static period when |𝑥𝑡𝑙 − 𝑥𝑡𝑟 | < 𝛼 and |𝑦𝑡𝑙 − 𝑦𝑡𝑟 | < 𝛼 , where
the threshold value 𝛼 is set as 10 pixels for our implementation.

3.3 Tapping Sound Detection and Segmentation
The motion of a user tapping the touchscreen with a finger always generates a weak acoustic signal. Thus, the
tapping sound may be used by an attacker to infer the input password [2] or text information [8]. Instead, we will
use the tapping sound to match the 𝑇𝑜𝑢𝑐ℎ𝐷𝑜𝑤𝑛 event in the trace and extract the finger static acoustic segment.
Next, the detail of finger tapping sound detection is described. First, the recorded acoustic signal for the example
in Fig. 3(a) will be processed with a bandpass filter (5𝐻𝑧 ∼ 200𝐻𝑧) and the output signal is shown in Fig. 5(a).
The significant pulse in the left part is the tapping sound. Second, the envelope E (𝑠) of the filtered signal 𝑠 is
extracted with following equation:

E (𝑠) = 𝐻 ( |𝑠 |) , (1)

where 𝐻 (·) is the Hilbert transform. To remove outliers, a sliding window-based data smoothing method is
adopted for the envelope signal. The window size is set to 1/10 of the signal length and the step length is set to
1/4 of the window length. The smoothed envelope signal is shown in Fig. 5(b).

The sample index of the peak can be detected by adopting a peak finding method. We traverse the signal
backward from the peak position to select which sample is the starting point of the tapping sound by using the
condition that this sample value is less than the threshold value, defined as 1/5 of the peak height. Finally, the
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acoustic fragment can be segmented out from the detected start point of the tapping sound with the length of the
estimated static finger period.

3.4 For PIN Code Scenario
For the PIN-based user authentication method, the finger motion on the touch screen contains many event pairs
of 𝑇𝑜𝑢𝑐ℎ𝐷𝑜𝑤𝑛 and 𝑇𝑜𝑢𝑐ℎ𝑈𝑝 events. The acoustic fragment during the static period can be directly isolated by
detecting these 𝑇𝑜𝑢𝑐ℎ𝐷𝑜𝑤𝑛 and 𝑇𝑜𝑢𝑐ℎ𝑈𝑝 events in the recorded acoustic signal. However, the 𝑇𝑜𝑢𝑐ℎ𝑈𝑝 event
sound (which is emitted when the finger leaves the screen) is too weak to be detected effectively. Therefore,
TouchPrint still relies on the touch screen to record the timestamps of the 𝑇𝑜𝑢𝑐ℎ𝐷𝑜𝑤𝑛 and 𝑇𝑜𝑢𝑐ℎ𝑈𝑝 events
for segmentation. Specifically, we first detect the starting point of each 𝑇𝑜𝑢𝑐ℎ𝐷𝑜𝑤𝑛 event using the method
mentioned in Section 3.2. The timestamp of each 𝑇𝑜𝑢𝑐ℎ𝐷𝑜𝑤𝑛 event and 𝑇𝑜𝑢𝑐ℎ𝑈𝑝 event are collected by the
touchscreen. The interval between these two timestamps will be considered as the static finger period. Finally,
we cut out the finger static acoustic segment beginning from the starting point of each detected 𝑇𝑜𝑢𝑐ℎ𝐷𝑜𝑤𝑛
event with this newly estimated finger static period.

4 TOUCH POSTURE BIOMETRICS PROFILING
TouchPrint relies on the auto-correlation properties of the Zadoff-Chu sequence for fine-grained acousticmultipath
separation. Thus, the multipath response that reflects the hand geometry and posture distinctness can be extracted
accurately.

4.1 Active Acoustic Sensing Procedure
In general, a commercial smartphone is always equipped with the speaker and microphone, which are placed
at the top and bottom of the phone as shown in Fig. 1(c). These two sensors will be used in our system for
active acoustic sensing. The active acoustic sensing starts when the user enters the App to input the password or
pattern and stops once the finger is lifted from the screen (for the pattern) or the Enter button is clicked (for the
PIN). During the sensing procedure, the speaker continuously emits a pre-designed acoustic signal described
in Section 4.2. Meanwhile, the microphone is continuously recording. The recorded acoustic signals will be
processed as described by Section 3 to extract the acoustic fragment when the finger stays static in the landmark
positions. These extracted audio fragments will be used to estimate the multipath effect corresponding with the
hand part (described in Section 4.3).

4.2 Acoustic Signal Selection and Modulation
During the pattern input procedure (as shown in Fig. 1(a)), the recorded acoustic signal via active acoustic
sensing always contains two signal types: i) the direct path signal emitted from the top speaker and recorded
by the bottom microphone, and ii) the multipath signal reflected off the hand and surrounding objects (i.e.,
user body, wall, ceiling or other furniture). Thus, we need to separate the reflection signals corresponding with
the user’s hand from the multipath signals for authentication. Existing works [9, 23, 34] separate the reflected
signal corresponding to the user’s face or surrounding environment with the chirp signal. In these scenarios, the
propagation path of the reflected signal (> 50𝑐𝑚) is generally much longer than the direct path (about 15𝑐𝑚).
In contrast, the reflected signal’s propagation path (< 30𝑐𝑚) in our scenario is much closer to the direct path’s
length, which leads to more difficulty for reflection signal separation.
The Zadoff-Chu sequence has been used in several works (e.g., acoustic ranging [1] and finger movement

tracking [21]) due to the auto-correlation properties. Inspired by these works, we apply the Zadoff-Chu sequence
to accurately extract the spatial multipath feature of the hand posture shape. A Zadoff-Chu sequence 𝑠𝑘 of length
𝑁𝑧𝑐 is defined as follows:
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Fig. 6. Hand multipath signal separation.

𝑠𝑘 = 𝑒 𝑓 𝑙𝑎𝑔×𝑖𝛼𝑘 , 𝑘 = 0, 1, 2, · · · , 𝑁𝑧𝑐 − 1, 𝑓 𝑙𝑎𝑔 = +1 or − 1, (2)
where 𝛼𝑘 is defined as follows:

𝛼𝑘 =

{
𝑢𝜋𝑘2/𝑁𝑧𝑐 , 𝑁𝑧𝑐%2 = 0

𝑢𝜋𝑘 (𝑘 + 1) /𝑁𝑧𝑐 , 𝑁𝑧𝑐%2 = 1, (3)

where 𝑢 and 𝑁𝑧𝑐 are integers with 𝑢 coprime to 𝑁𝑧𝑐 and % is the modulo operator. An example of a Zadoff-Chu
sequence is shown in Fig. 6(a) with sequence length 𝑁𝑧𝑐 = 𝑢 × 𝑁𝑐ℎ𝑖𝑟𝑝 + 1 = 125, when 𝑢 = 31, 𝑁𝑐ℎ𝑖𝑟𝑝 = 4 and
𝑓 𝑙𝑎𝑔 = +1, meaning that modulated acoustic signals will contain 𝑁𝑐ℎ𝑖𝑟𝑝 = 4 chirps.
The generated Zadoff-Chu sequence is a polyphase complex-valued sequence (containing the real part and

imaginary part) and needs to be modulated into the acoustic signal (only contains the real value) for active
acoustic sensing. The acoustic signal modulation procedure contains the following two steps:
Upsampling: this step increases the sampling rate 𝑓𝑠 of the generated Zadoff-Chu sequence 𝑠𝑘 (whose length

is 𝑁𝑧𝑐 ) to 48𝑘𝐻𝑧 through zero-padding in the frequency domain. After this step, the length of the generated
signal 𝑠𝐼

𝑘
will be increased to 𝑁 𝐼

𝑧𝑐 = 𝑁𝑧𝑐 𝑓𝑠/𝐵 for the given target signal’s bandwidth 𝐵. The procedure of zero
padding in the frequency domain is denoted as follows:

𝑠𝑘
𝐼 = F −1 {S {

Z
{
S {F {𝑠𝑘 }} , 𝑁 𝐼

𝑧𝑐

}}}
, (4)

where F and F −1 represent the Fourier transform and inverse Fourier transform operations. S moves the
zero-frequency component to the center of the spectrum. For a vector, S will swap the left and right halves. For a
sequence 𝑋 = [𝑥𝑖 ] where 1 ≤ 𝑖 ≤ 𝑁𝑧𝑐 , Z

{
𝑋, 𝑁 𝐼

𝑧𝑐

}
is used to insert the zeros before and after the sequence 𝑋 , to

increase its length to the length of 𝑁 𝐼
𝑧𝑐 . Specifically, we denote the added zero number as 𝑁𝑧𝑒𝑟𝑜 = 𝑁 𝐼

𝑧𝑐 − 𝑁𝑧𝑐 , then
Z

{
𝑋, 𝑁 𝐼

𝑧𝑐

}
=
[
0𝑖𝑏 , 𝑥𝑖 , 0𝑖𝑎

]
1 ≤ 𝑖𝑎 ≤ 𝑁𝑧𝑒𝑟𝑜/2, 1 ≤ 𝑖𝑏 ≤ 𝑁𝑧𝑒𝑟𝑜/2 when 𝑁𝑧𝑒𝑟𝑜%2 = 0, otherwise, 1 ≤ 𝑖𝑎 ≤ 𝑁𝑧𝑒𝑟𝑜/2+ 1,

1 ≤ 𝑖𝑏 ≤ 𝑁𝑧𝑒𝑟𝑜/2.
Acoustic signal generation: the acoustic signal 𝐴(𝑡) used for active sensing should be inaudible to avoid

disturbing users. Thus, the above Zadoff-Chu sequence should be multiplied by a carrier signal with a high
frequency of 𝑓𝑐 as follows:
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𝐴 (𝑡) = cos (2𝜋 𝑓𝑐𝑡) 𝑅𝑒
(
𝑠𝑘

𝐼
)
− sin (2𝜋 𝑓𝑐𝑡) 𝐼𝑚

(
𝑠𝑘

𝐼
)
, (5)

where 𝑅𝑒 (𝑠𝑘 𝐼 ) and 𝐼𝑚(𝑠𝑘 𝐼 ) are the real and imaginary parts of 𝑠𝑘 𝐼 , respectively. An example of a generated
acoustic signal is shown in Fig. 6(b).

Larger 𝑁𝑐ℎ𝑖𝑟𝑝 value leads to that more chirps can be modulated in the generated acoustic signal, which benefits
the multipath separation. Therefore, in order to accurately separate the reflection signals corresponding with
the different hand parts, we select 𝑢 = 63, 𝑁𝑐ℎ𝑖𝑟𝑝 = 6, 𝑓 𝑙𝑎𝑔 = +1, meaning that the length 𝑁𝑧𝑐 = 379. We set
𝑁 𝐼
𝑧𝑐 = 2,048 and the audio frequency bandwidth 𝐵 = 𝑁𝑧𝑐 𝑓𝑠/𝑁 𝐼

𝑧𝑐 ≈ 8,883. This is advantageous because a wider
frequency bandwidth yields better autocorrelation. We also set the carrier signal frequency, 𝑓𝑐 , to 17𝑘𝐻𝑧 so that
the modulated signal ranges from 12,558.5𝐻𝑧 to 21,441.5𝐻𝑧. This frequency range may be slightly audible to
some people, so the signal volume is reduced to minimize annoyance for users.

4.3 Multipath Signal Separation
The extracted acoustic signal fragment always contains both the direct path signal and the multipath signals
(reflected by nearby objects). Using the high auto-correlation characteristic of above ZC-sequence based acoustic
signal, the multipath signals of hand can be separated from the recorded signal. This is done by applying
the correlation function for the acoustic segment 𝑅= {𝑟𝑖 , 𝑖 ∈ [1, 𝑀]} and the designed active sensing signal
A = {𝑎𝑖 , 𝑖 ∈ [1, 𝑁 ]}. The correlation result 𝐶 = {𝑐𝑘 , 𝑘 ∈ [1, 𝑀 + 𝑁 − 1]} of 𝑅 and 𝐴 is calculated by following
equation:

𝑐𝑘 =
∑𝑁

𝑗=1
𝑎 𝑗𝑟𝑘+𝑗 . (6)

Fig. 6(c) is an example of the correlation between the acoustic segment and the designed active signal. Because
the hand is closer to the smartphone than nearby objects, it is necessary to locate the direct path signal in the
correlation result and to extract only the near signals, which can be seen as the multipath signal reflected by the
hand part.

In general, the highest peak in the correlation result of𝐶 corresponds to the direct path because the surrounding
object and loss will absorb the reflected signal’s energy through the longer propagation path. However, for the
No-Line-of-Sight (NLOS) scenario where the hand impedes the direct path signal, the reflection signal may be
stronger. To solve this, the earliest peak will be considered the direct path. Fig. 6(d) shows an example of direct
path detection. Specifically, we first obtain the envelope by applying a Hilbert transform to the positive section
of the correlation result. The highest recorded peak can be viewed as the candidate result. Then, we check if any
peaks above the threshold value come prior to the candidate one. If so, the earliest peak should be chosen as the
true direct path. In our system, the threshold value is set to one half of the maximum peak value. Finally, the
fragment near the direct path peak will be used as the multipath response corresponding with the hand. In our
implementation, the fragment length is set with 70 samples.
In practice, the length of the extracted acoustic segment may be shorter than the designed acoustic signal,

which means 𝑀 < 𝑁 . This type of acoustic segment will be discarded. Thus, this segment will be used to
generate the multipath response only when 𝑁 ≤ 𝑀 . However, when 𝑁 ≤ 𝑀 ≤ 2𝑁 , the segment may not contain
a complete active sensing signal. In this case, we apply the circle cross-correlation function to generate the
multipath response. First, a subsegment 𝑉= {𝑣𝑖 , 𝑖 ∈ [0, 𝑁 − 1]} will be extracted from the center position of the
acoustic segment 𝑅. The circle cross-correlation result can be calculated as:

𝐶circle (𝑘) =
𝑁∑
𝑗=1

𝑣 𝑗𝑎
𝑘
𝑗 , (7)
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where Ak =
{
𝑎𝑘𝑗 , 𝑖 ∈ [1, 𝑁 ]

}
circularly shifts each element in 𝐴 by 𝑘 positions.

For the scenario where𝑀 ≥ 2𝑁 , we also use above steps to generate the multipath response, which is more
computationally efficient than directly computing the cross correlation between 𝑅 and 𝐴.

4.4 Multipath Effect Enrichment
In recent years, mobile phone hardware increasingly supports high definition audio capabilities targeted at
audiophiles. Specifically, the phone supported stereo output spans a wide variety of off-the-shelf phones and
tablets, such as Samsung Nexus 10 tablets, HTC One M8, Sony Xperia Z2, Google Nexus 6P and Google Pixel 4.
Compared with the traditional smartphone (mono channel playback only), this type of phones is equipped with
two homogeneous speakers located at the top and bottom of the phones. Moreover, this type of phone enables
the two speakers to play different audio streams independently. It supports to sense the various sides of the input
gesture to enrich the hand multipath effect during the passcode input procedure.i
TouchPrint uses the speaker array embedded in the smartphone (especially for the phone supporting stereo

output) to enrich the hand multipath effect during the passcode input procedure. To avoid the conflict between
the two speakers, TouchPrint enables the top and bottom speakers to independently emit two orthogonal ZC
sequences-based acoustic signals (i.e., 𝑓 𝑙𝑎𝑔 = +1 and 𝑓 𝑙𝑎𝑔 = −1 in Equ. 2), respectively. These two types of
ZC sequences based acoustic signals have lower cross-correlation characteristics. So, the multipath response
generation for these two signals does not interfere with each other.

4.5 Case Study
A case study is performed to verify whether the generated multipath response can reflect the individual difference
on the hand biometrics (i.e., finer length and palm-size) and posture types. The hypothesis is that the difference
between samples from the same user with different postures indicates that the generated multipath response can
distinguish the posture types. Moreover, the difference between the samples from the different users with the
same posture indicates that it can reflect the individual difference on the hand biometrics (i.e., finer length and
palm-size). Thus, two users (called Alice and Bob) participate in the case study and each of them will input the
pattern in Fig. 3. These two users have different hand sizes (Alice: 17𝑐𝑚 × 9𝑐𝑚 and Bob: 15𝑐𝑚 × 8.5𝑐𝑚). During
the pattern input procedure, the touch traces on the screen and recorded acoustic signal are used to generate the
hand multipath response. Each user will input the pattern with two gestures shown in Fig. 7. With the 𝐺𝑒𝑠𝑡𝑢𝑟𝑒1,
the user will only use the forefinger to touch the screen and grip other fingers. In contrast, with the 𝐺𝑒𝑠𝑡𝑢𝑟𝑒2,
the user will outstretch both the forefinger and middle finger, but only uses the middle finger to touch the screen.
With each gesture, the user will input the pattern three times.

The generated multipath response and the corresponding similarity matrix are shown in Fig. 7. We can discover
the following findings. (1) For each user, the multipath response corresponding various gestures is different even
in the same landmark positions on the screen. (2) The multipath response will be unique for various types of
gestures, and (3) it shows observable differences between users, even when they use the same gesture and touch
positions. (4) The hand multipath response can be effectively enriched through sensing with multiple speakers.

Based on the above findings, we can conclude that the generated hand multipath response can distinguish the
hand posture and geometry biometrics from different users, thus being applicable as the identifier for passcode
based user authentication.

5 AUTHENTICATION MODEL
The user should perform registration before using the system for the first time. In the registration state, the user
is required to input his/her passcode with a consistent hand posture (e.g., Gesture 1 in Fig. 7) for multiple trials.
Then, for successful authentication in the verification stage, the user must input the passcode using the same
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(b) Sensing with the bottom speaker and bottom microphone

Fig. 7. Generated hand multipath responses and the corresponding similarity matrix between two users who input the
pattern (shown in Fig. 3(a)) with two gestures.

hand posture as in the registration stage. This section will describe how to generate the multipath response
based feature for each landmark position and each sensing channel in the registration state as well as how to
authenticate the user for the single-user model and multi-user model.

5.1 Feature Generation
We assume that𝑚 records are collected from a user during the registration state. For the 𝑘th record, the multipath
response 𝑅(𝑖, 𝑗)𝑘 of the 𝑖th landmark position with the 𝑗th sensing channel will be generated as described
in Section 4.3. This subsection will discuss how to generate the feature for 𝑖th landmark position with the
𝑗th sensing channel based on the multipath responses 𝑅(𝑖, 𝑗) = {𝑅(𝑖, 𝑗)𝑘 , 𝑘 ∈ [1,𝑚]}. The multipath response
difference between Alice and Bob (Fig. 7) can be observed visually. In this way, the users can be distinguished
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Fig. 8. Feature extraction with the generated multipath responses in the registration state.

based on the similarity of their multipath response. However, we find that directly using Euclidean distance will
not accurately calculate the similarity. For example, Fig. 8(a) shows the multipath responses of landmark position
1. In Fig. 8(a), Alice has inputted the pattern with gesture 1. The highest peak (direct path) of data 1 is not aligned
with data 2 and 3 due to the limited sampling rate.

To overcome this issue, the multipath responses 𝑅(𝑖, 𝑗) first should be realigned. Specifically, we first adopt a
linear interpolation for each multipath response 𝑅(𝑖, 𝑗)𝑘 since the offset may be less than the sample interval
distance. Then, the 1st multipath response 𝑅(𝑖, 𝑗)1 is selected as the base. The direct path peak segment from the
other multipath responses 𝑅(𝑖, 𝑗)𝑘 , 𝑘 ∈ [2,𝑚] will be shifted by 𝑠 ∈ [−𝑤,𝑤] samples and matched with the direct
path peak segment of base 𝑅(𝑖, 𝑗)1. The offset 𝑠 occurs at the minimum distance between the shifted peak segment
and base peak segment. Finally, the aligned multipath responses 𝑅(𝑖, 𝑗) (as shown in Fig. 8(b)) are generated by
shifting these multipath responses 𝑅(𝑖, 𝑗)𝑘 , 𝑘 ∈ [2,𝑚] with the corresponding determined offset 𝑠 .

Secondly, an occupancy map-based method is adopted to filter the outlier data from an inconsistent user hand
posture. The occupancy map can be regarded as a confidence map made up of two-dimensional matrix 𝑀𝑖, 𝑗 ,
whose column number is set with the length of the generated multipath response. The raw number is set at 1100
empirically. The cell in the matrix reflects the similarity among the aligned multipath responses 𝑅(𝑖, 𝑗) and will
be set with the confidence level according to the vertical distance between the multipath responses. The initial
value of each cell is set to zero. The following steps can construct the occupancy grid map: 1) the cell𝑀 (𝑥,𝑦)
covered by each multipath response 𝑅(𝑖, 𝑗)𝑘 will be added with the current amplitude 𝑎 (i.e., the 𝑦th element
amplitude in 𝑅(𝑖, 𝑗)𝑘 ). 2) the surrounding cells𝑀 (𝑥𝑡 , 𝑦𝑡 ), 𝑥 − 𝑟 < 𝑥𝑡 < 𝑥 + 𝑟,𝑦 − 𝑟 < 𝑦𝑡 < 𝑦 + 𝑟 of the cell𝑀 (𝑥,𝑦)
will be added by 𝑎 × (1 −

√
(𝑥𝑖 − 𝑥)2 +

(
𝑦 𝑗 − 𝑦

)2). Thus, a higher amplitude of the multipath response will lead to
a higher confidence level. 3) Any outlier cells, defined as having a confidence level less than 30% of the highest
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confidence level in the occupancy grid (as shown in Fig. 8(c)), are removed. Finally, the direct path peak segment
(other parts will be set to zero) of base 𝑅(𝑖, 𝑗)1 and corresponding occupancy map based matrix𝑀𝑖, 𝑗 will be stored
for verification.

5.2 Similarity Based Verification
The multipath response in different landmark positions and with different sensing channels can be seen as an
independent event. Thus, we adopt a vote-based method to authenticate the user. In the voting procedure, each
position with a different channel can be treated as an independent elector.
For the single-user model, we assume that the database (shown in Fig. 2) has stored a candidate’s occupancy

map based matrix𝑀𝑖, 𝑗,𝑈 ,𝑈 = [𝑢1], which corresponds to the finger touch in the 𝑖th position with the 𝑗 th sensing
channel. The elector 𝐸𝑖, 𝑗 , which corresponds to the 𝑖th landmark position with the 𝑗th sensing channel, will
vote based on the similarity between the multipath response of the input sample and the stored feature. To do
this, the input multipath response, 𝑅(𝑖, 𝑗)𝑡 , must first be interpolated and aligned with the corresponding stored
direct path peak segment for similarity calculation with the stored matrix 𝑀𝑖, 𝑗,𝑢1 . The multipath response after
interpolated and aligned is denoted as 𝑅(𝑖, 𝑗)𝑡 . Then, the similarity 𝜑 can be calculated by the following equation:

𝜑 =
𝑆

𝑃𝑧𝑒𝑟𝑜
, (8)

where 𝑆 is the average value of confidence level of all cells in𝑀𝑖, 𝑗,𝑢1 covered by the multipath response 𝑅(𝑖, 𝑗)𝑡
and 𝑃𝑧𝑒𝑟𝑜 is the percent of the cells whose confidence level is equal to zero. To avoid the exception of dividing by
0, 𝑃𝑧𝑒𝑟𝑜 will be reset to 1/(1.2 × 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅(𝑖, 𝑗)𝑡 )), where 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥) is the length of the vector 𝑥 . The vote will be
discarded if the similarity 𝜑 is less than a threshold value (this will be discussed later). Finally, the user can be
identified successfully if at least half the electorate votes in favor of authentication.
The threshold value mentioned above is determined in the registration stage. Here, collected samples will be

divided into two parts, which are used to generate the matrix-based features and determine the threshold value.
Each sample in the second part will generate a similarity value for each stored matrix𝑀𝑖, 𝑗,𝑢1 . Thus, the threshold
value for matrix𝑀𝑖, 𝑗,𝑢1 will be set as 1.2 times of the average value of the generated similarity values.

For themulti-usermodel, we assume that the database has𝑛 candidates’ occupancymap basedmatrix𝑀𝑖, 𝑗,𝑈 ,𝑈 =

[𝑢1, · · · , 𝑢𝑛]. In the voting procedure, each elector 𝐸𝑖, 𝑗 will traverse all stored candidates 𝑈 = [𝑢1, · · · , 𝑢𝑛] and
vote for the candidate with the highest similarity value. At last, the user to be authenticated will be the one who
receives the most votes. Besides, the user will be denied access to the device once more than half the elector
discards their vote.

6 EVALUATION
This section will evaluate the performance of TouchPrint and study the impact of training dataset size, number
of landmark positions, and applied multipath enrichment method. Additionally, it will study the effectiveness of
defending against the replay attacks and the observe-imitate attacks.

6.1 Experiment Setup
We have recruited 30 users (i.e., 18 males and 12 females whose ages range from 24 to 58) to participate in our
experiment and provided a gift (electronic accessories) to each user as an incentive. No volunteer drops out the
sample collection since it does not take them much time in each day. All users are divided into two groups (15
registered users and 15 attackers) due to different instructions. All registered users are told what the biometrics
used in TouchPrint before the sample collection is. Therefore, they will input the pattern and PIN with a preferred
hand posture and keep the same hand posture during the sample collection. Besides, all attackers are also told
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Fig. 9. Overall Performance of TouchPrint.

the biometrics used in TouchPrint, but the attackers who perform the replay attack do not know any information
(i.e., hand sizes and posture types) about the biometrics of the victim.

The evaluation is performed in different rooms, with three types of environment: Type 1 (a quiet, open setting
with few furniture), Type 2 (a crowded, setting with more furniture and slightly more ambient noise from the
human walking, opening or closing the door, or talking), and Type 3 (quite noisy due to a playing TV). We ask
each registered user to input a specified pattern (as in Fig. 3(a)) and PIN code (as in Fig. 1(b)) since our approach
is mainly used as a second-factor authentication for the Passcode based method. Thus, the registered user inputs
the above Patten and PIN ten times on the Google Nexus 6P (supports stereo playback and the multipath effect
enrichment method, mentioned in Section 4.4) in each environment. Besides, the collection lasts for ten days to
evaluate system performance over time.
The used metrics for performance evaluation contain (1) authentication accuracy: the percentage of correct

identification (𝑈𝑖 is correctly authenticated as𝑈𝑖 ), (2) false accept rate: the percentage of the unregistered user
who is identified as a registered user. (3) false reject rate: the percentage of the registered user who is identified
as a stranger.

6.2 Overall Performance
In the evaluation of the authentication accuracy for registered users, only the samples collected on the first
day are used for training. Other samples are used for testing. The confusion matrixes of results for PIN and
Pattern scenarios are shown in Fig. 9(a) and Fig. 9(b), respectively. We observe that the authentication accuracy
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for registered users in each case achieves over 88% accuracy. The average authentication accuracies of PIN and
Pattern scenarios are 92.8% and 91.7%, respectively.
Fig. 9(c) shows the authentication accuracy of TouchPrint in three types of environment. We can find that

the accuracy of PIN or Pattern is similar to different kinds of environments, which shows that our approach is
robust to various types of physical layouts and environmental noise, including moving people. The authentication
accuracy of the PIN scenario is better than that of the Pattern scenario in each case. We believe this is because
the PIN scenario has more landmark positions (four vs. three), and a larger number of landmark positions may be
beneficial for overall accuracy, evidenced by the study in Section 6.4.

User experience in the authentication stage will be impacted once falsely authenticated as a stranger. Therefore,
we first evaluate the user experience using the false reject rate. The results are shown in Fig. 9(d). Results show
that the average false reject for registered users in each type of environment is below 0.6%. Besides, we also
observe that the user can be authenticated to other users from the above confusion matrixes. Therefore, we
further evaluate the user experience with the number of passcode input times until the successful authentication
for each registered user. Fig. 9(e) shows the CDF of input times until successful authentication. We can see that
more than 90% of registered users can be accurately authenticated through inputting the passcode less than three
times. This result demonstrates that the impact on the user experience is limited.

6.3 Impact of Training Dataset Size
Only limited samples can be collected for training in the application scenario since collecting too many samples
will hurt the user experience during the registration stage. To study the impact of training dataset size, we use
different sample scales at each training day. Here, data from the first three days are used as training data, and the
samples of the other seven days are used as test data. Fig. 10 shows the accuracy with different training dataset
sizes in the three types of environment. We find that the gain for accuracy is limited when the training dataset
size exceeds the above ten samples. Specifically, when five samples are used for training, the accuracy of all cases
is under 80%. An average accuracy level of about 92% can be achieved when ten samples are used for training.
Furthermore, accuracy can reach approximately 96% when 25 samples are used for training. Considering the
tradeoff between the user experience and the authentication accuracy, we suggest that the user at least collect
ten samples for training in the registration stage.

6.4 Impact of Landmark Positions Number
Our approach combines the identification results in the multiple landmark positions for user authentication.
Therefore, more landmark positions will lead to better accuracy. To study the impact of the landmark position
number in the pattern or PIN, five registered users are invited to input a specified pattern and PIN, which cover
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Fig. 12. False accept rates against replay attacks.

all the nine landmark positions in Fig. 3. Each user inputs both the pattern and PIN for 40 times in the sample
collection procedure. In this experiment, the first ten samples will be used for training, and the remaining 30
samples are used for testing.
Fig. 11 shows the authentication accuracy for the PIN and pattern, respectively. It demonstrates that the

accuracy can be significantly improved when covering more landmark positions, especially for the sensing
channel using the bottom speaker and bottom microphone. Specifically, when three landmark positions are used,
the authentication accuracy for the pattern case is about 70%. Besides, it can be improved to 88% when nine
landmarks are used. We believe the underlying reason is that information about the user hand’s geometry can be
sensed more comprehensively with more landmark positions.

6.5 Impact of Mutlipath Effect Enrichment
Fig. 11 also shows the impact of applying the multipath effect enrichment method. First, it illustrates clearly
that the accuracy is significantly improved when synchronous sensing from the top and bottom speakers and
microphone is used so that more sides of the hand can be sensed. Second, the accuracy when using the top
speaker-bottom microphone pair is better than the accuracy when using the bottom microphone-bottom speaker
pair. One explanation is that the former combination has stronger multipath sensing ability (e.g., the channel can
be blocked by the hand).

6.6 Resilience to Replay Attack
The replay attack is highly possible to be performed by an attacker once the passcode is inferred. It makes the
traditional finger-touching authentication method less reliable. To evaluate the reliability of TouchPrint against
the replay attack, we invited 15 volunteers (beyond the above 15 registered users) to perform the replay attack
in all three types of environments. Specifically, the attackers attempt to fool the authentication system, which
stores the user biometric feature generated with the first-day samples collected from 15 registered users in each
environment. If the passcode is inferred via the non-visual sensors (e.g., motion sensor [24, 25], acoustic [16]
or Wi-Fi signal [17]), the attacker does not have any information on the registered user’s hand size and input
posture. Thus, the attacker will input the pattern (as in Fig. 3(a)) and PIN code (as in Fig. 1(b)) with a random
hand posture for ten times in each type of environment. Fig. 12 shows the average false accept rate. We find that
even if the adversary knows the Pattern or PIN, our approach can still decrease the success rate of the replay
attack to below 0.5%. It also means that TouchPrint is reliable for various types of non-visual based side-channel
attacks (e.g., motion sensor, acoustic or Wi-Fi signal).
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Table 1. False Acceptance Rates Against Observe and Imitate Attacks.
Attack Type 1 2 3 4 5 6 7 Avg

Observe from the video Pattern 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.042
PIN 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.028

Observe near the victim Pattern 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.057
PIN 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.042

6.7 Resilience to Observe and Imitate Attack
In this study, two types of observe and imitate attacks are performed to fool the authentication system, which
stores the user biometric feature generated with ten samples collected from victims. Since the attacker with the
camera [30] can infer the passcode, the adversary will first imitate the victim’s hand posture through watching
the video, which records the proceedings of the victim’s inputting the pattern and PIN with a fixed point of view.
In this scenario, the adversary is allowed to watch the video multiple times. Moreover, the user hand posture
during the passcode input procedure can also be snooped by the near adversaries with direct visual observation.
Thus, the second type of observe and imitate attack allows the adversary to sit near the victim so that he/she
can observe the victim’s hand posture directly. To make this type of attack more challenging, the adversary is
allowed to observe the hand posture of the victim’s inputting from multiple angles.
To study the effectiveness of TouchPrint defense against the above two types of observe and imitate attacks,

we randomly select seven volunteers (also participated the study in Section 6.6) as the adversaries and select
seven registered users as the victims. For the above two types of observe and imitate attacks, the adversaries will
input the pattern and PIN ten times with the observed hand posture seriously.
The false accept rate of both attack scenarios are shown in Table 1. The result demonstrates that the success

rate is very low when the adversary performs the observe and imitate attack via a camera. Further, even if the
adversary is close to the victim and can directly observe him/her inputting, our approach can still effectively
thwart the imitate attack.

7 RELATED WORK
Over the past decade, various approaches have provided insights for passcode inferring, user authentication, and
acoustic sensing. In this section, these systems and approaches are reviewed.
Passcode inferring via side-channel sensing: Recent years, many works demonstrate that various types

of side-channel based attacks can infer users’ personal information (e.g., PIN, patterns). For example, the motion
sensor embedded on the wearable devices (e.g., smartwatch) can be used to infer the sensitive information when
the user inputs the PIN on the physical keyboard [24, 26] or smartphone touchscreen [13, 25]. Patternlistener [35]
cracks the pattern lock leveraging the speaker and microphone embedded in the victim’s smartphone. These
methods are known as intrusion attacks and can be defended against through sensor authority management. By
contrast, other non-invasive attacks are more challenging to prevent. For example, Wi-Fi signals [17] surrounding
a user have been proven as one way to infer the user’s online payment passcode; this method is very difficult
for users to detect. Further, sensitive information also can be inferred by surrounding smartphones. Specifically,
the keystroke sound can be used to locate the click location using the microphones in the smartphone [12, 36].
Additionally, the acoustic phase and Doppler shift have been used to improve the PIN inferring accuracy [16].
Multiple side-channel information can also be combined to achieve more sophisticated attacks [10]. These threats
motivate us to design a second-factor authentication for the PIN/pattern-based authentication method to further
prevent the private data in the device from leakage.
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User authentication with smartphone and wearable device: Smartphones and wearable devices have
been widely used for user authentication since they contain various types of sensors that can sense the user’s
biometric information. For example, FaceID is a very popular facial recognition-based authentication method
and has been applied in many commercial smartphones. PPGPass [4] uses signals from Photoplethysmography
(PPG) sensors in wrist-worn wearables to perform two-factor authentication. However, these methods need
to add additional sensors in the device, which increases the hardware cost. Another system, EchoPrint [34],
uses active acoustic sensing to achieve the liveness verification for face identification (like FaceID) but does not
adopt any additional hardware. Besides, the LipPass [15] system provides the liveness verification for voiceprint
authentication by extracting the Doppler feature of a lip-reading motion. When interacting with IoT devices,
P2Auth [11] has designed a uniform authentication method by comparing the interaction motion sensed by
devices with those captured by the smartwatch. It does not require the IoT device to be equipped with any special
sensors. The prior work [18] focuses on the gait-based authentication on smartphones considering the impact
of the phone holding positions. It uses the accelerometer embedded in smartphones to track the user’s body
movement, and thus can be used for continuous authentication. In contrast, TouchPrint works in an instant
scenario such as online payment and screen unlocking. Other works provide second-factor authentication for the
interaction on the smartphone touchscreen by identifying the user’s behavior pattern (i.e., pressure and velocity
infromation [3, 14, 33]) and the geometric information between multiple fingers [20]. However, these two methods
incur the limitations on their accuracy (which may be reduced due to the behavioral variability) and restricted
interaction scenarios (i.e., many cannot be applied to the single-finger interaction scenario). By contrast, our
approach is more robust than the behavior pattern-based method since it extracts more stable features (i.e., spatial
information on the hand posture shape). It can be applied to a broader range of on-screen interaction scenarios
(i.e., does not restrict the finger number touched on the screen). TouchPass [29] uses the active vibration signals
to capture the physical characters (e.g., density, conductance, etc.) of touching fingers for user authentication. In
contrast, TouchPrint adopts the acoustic sensing to capture another type of finger-touching biometrics (i.e. user’s
hand posture shape traits) for user authentication.
Acoustic sensing on smartphone: The accurate acoustic ranging on smartphones has been adopted for

many mobile applications such as: D2D ranging [7], hand motion tracking [6], gesture recognition [28], and
encounter detection [31, 32]. For these applications, the multipath effect is always seen as interference and
needs to be removed. However, the multipath effect, when captured with active acoustic sensing, can identify
the environment’s spatial features and has also been adopted in various mobile applications. For example,
EchoPrint [34] separates the echo signal, reflected by the user’s face, for user authentication. EchoTag [23] locates
the device by extract environmental-dependent frequency features. Another application, CondioSense [9], extracts
the distribution of the echo signal for device context position identification. UbiK [27] extracts the multipath
feature for keystroke recognition. To extract the multipath feature, these works generally separate the indirect
path signal for the macro scenario (interval distance > 50𝑐𝑚) or directly extract the frequency feature of the
entire recorded signal for the micro scenario (interval distance < 30𝑐𝑚). In contrast, our approach will carefully
separate the fine-grained indirect path signal for a micro scenario, which is more challenging. VSkin [21] also
adopts the Zadoff-Chu sequence-based acoustic sensing to design a finger-touching based interaction method. It
aims to detect the finger tapping event, estimate the tapping position (possible outside screen area), and track
the moving finger only via acoustic sensing. In contrast, TouchPrint detects the finger tapping event on the
screen and obtains the tapping position directly from the touch screen rather than the acoustic sensing. Moreover,
TouchPrint focuses on extracting the acoustic multipath response corresponding with the hand geometry when
the finger stays static in the reference positions for authentication via the acoustic sensing. TouchPrint also
utilizes multiple speakers to enrich the generated multipath feature, while VSkin only uses one speaker.
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8 DISCUSSIONS
We now provide some further discussions on the limitation and possible extension of TouchPrint.

Continuous authentication manner: TouchPrint is an instant authentication method. It depends on the
acoustic multipath feature when the finger is static on multiple specified positions on the screen. Once applied in
the continuous scenario, it will become more challenging to extract the hand biometrics feature independent of
the finger-touching positions. We leave such an extension as possible future work.
Multiple fingers scenario: TouchPrint focuses on identifying individual diversity on both hand biometrics

(e.g., finger length and palm-size) and preferred posture types for user authentication. Meanwhile, TouchPrint
depicts the 3D shape of the above hand posture by analyzing the acoustic multipath reflection signals. Comparing
with the hand biometrics (e.g., finger length and palm-size), the users can select the posture type when inputting
the passcode (i.e., PIN, Pattern) as their preferred. Therefore, TouchPrint still works when the user uses multiple
fingers, even from different hands, to input the Pattern or PIN code as long as the same posture can be presented
in the verification procedure.
Authentication accuracy: We study the impact of training data size on the authentication accuracy. The

experimental results show that the authentication accuracy can be improved to 96% when 25 samples are used
for training. However, larger training data size leads to more efforts from the user during the registration stage.
Since we only leverage TouchPrint as the second-factor user authentication for the PIN code or pattern-based
authentication, a 90% accuracy may be sufficient. We suggest that the system collects at least ten samples from
the user during the registration stage. In case of higher accuracy is desired, more training samples and passcodes
with more landmark positions are needed.

9 CONCLUSION
To prevent the exposure of private data stored in the mobile device to an adversary who learns the passcode,
traditional methods add a second-factor authentication that relies on the behavior biometrics or geometry
constraint among the on-screen fingers. However, these methods generally have poor accuracy due to behavioral
variability in users or may only be applied in the multi-finger touch scenario. Therefore, we propose a robust,
reliable, and secure authentication method, called TouchPrint, which is robust to the touch behavioral variabilities
and does not restrict the on-screen interaction manner. The key insight of TouchPrint is to identify the hand
posture shape traits as the user inputs PIN or pattern by depicting the fine-grained multipath effect when the
finger is static on the screen. We overcome several challenges, including accurate acoustic signal segmentation
(i.e., obtaining the acoustic fragment when the finger is static in reference positions), fine-grained hand multipath
separation, and reliable authentication with limited training samples. The evaluation is performed in the practical
environments, and the results demonstrate that TouchPrint can effectively repel many attacks (e.g., replay attack
and observe-imitate attack). Finally, our approach can achieve an authentication accuracy of about 92% with only
ten training samples. We leave further improvements in the user experience and the authentication accuracy of
the proposed approach as our future work.
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