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Abstract—Wireless Rechargeable Sensor Networks (WRSNs)
with perpetual network lifetime have been used in many Internet
of Things (IoT) applications, like smart city and precision
agriculture. Rechargeable sensors together with Unmanned Aeri-
al Vehicles (UAVs) are collaboratively employed for fulfilling
periodic coverage tasks. However, traditional coverage solutions
are normally based on static deployment of sensors and not
suitable for such coverage requirements. In this paper, we
propose a new concept of coverage problem named Period-Area
Coverage (PAC) which requires data of the overall area must
be collected periodically. We focus on maximizing the energy
efficiency of UAVs and propose two heuristic scheduling schemes
to balance energy cost. Moreover, we adopt adjustable sensing
range to further promote efficiency and develop a charging
re-allocation mechanism for UAVs. Test-bed experiments and
extensive simulations demonstrate that the proposed schemes can
enhance energy efficiency by 18.2% compared to prior arts.

I. INTRODUCTION

Wireless Rechargeable Sensor Networks (WRSNs) have
significantly mitigated the energy limitation of wireless sensor
networks through collaborations between mobile chargers (M-
Cs) and rechargeable sensors [1]. Lifetime of network can be
perpetually prolonged by applying appropriate charging mech-
anisms and scheduling schemes [2]–[6]. Therefore, WRSNs
have been used in a variety of the Internet of Things (IoT)
applications, such as precision agriculture and smart city [7],
[8]. For example, in a precision agriculture application, static
(rechargeable) camera sensors, and mobile camera sensors
(i.e., Unmanned Arial Vehicles, UAVs), are collaboratively
employed to periodically collect image data and timely mon-
itor the crop growth, plant diseases and insect pests [9]. Data
missing may cause catastrophic consequences in such a system
, e.g., a local region of crops may suffer from disease or
insect pests, leading to widely death, due to the missing
detection of the time-critical event. Therefore, a compulsory
requirement for this application is to periodically monitor the
whole area without any data missing through collaboratively
applying static and mobile sensors. Hence, two guarantees
should always been satisfied: 1) full and periodical monitoring
coverage for the whole area, and 2) normal functionality &
survivals for all rechargeable sensors.

We define the concept of Period-Area Coverage problem
(PAC) for WRSNs suitable for periodic area coverage appli-
cations. It has never been explored before:

Definition 1 (Period-Area Coverage).

Given a monitoring area A, a number of static rechargeable
sensors are deployed for sensing events periodically. A UAV
is employed as a mobile sensor & charger to 1) sense vacant
regions that are beyond sensors’ monitoring scope and 2)
replenish energy for sensors. The problem here is how to
ensure that any place within A is monitored once in each
period T .

Traditional methods overlook the problem of periodical-
ly covering an area with both UAVs and sensors in such
agriculture monitoring applications. In literature, coverage
problems can be summarized into three types: target coverage
problem [10], barrier coverage problem [11], [12] and area
coverage problem [13]. However, most coverage problems are
incident-based, where events can be timely detected through
carefully designing sensor deployment scheme. None of them
is suitable for the period-area coverage problem.

This paper aims at solving the period-area coverage problem
(PAC) by appropriately scheduling event detection placement
as well as energy replenishment for this network. However,
it is challenging to develop a practical solution due to the
following three reasons. First, UAVs provide flexibility of
tasks execution; however, it is still difficult to trade off the
traveling cost and charging cost for them. Second, energy
cost is high in such a complicated coverage problem, and
maximizing the energy efficiency increases the difficulty of
network performance evaluation. Third, shifting among vacant
regions and “hungry” sensors is NP-hard (see our proofs in
Section V-A); hence, leveraging complexity and performance
of scheduling scheme is crucial.

To overcome these challenges, we aim to maximize energy
efficiency when taking data collection period and area cover-
age as two main constraints (i.e., for guaranteeing PAC).

The main contributions of this paper are summarized below:
• To the best of our knowledge, this is the first work that

proposes the concept of period-area coverage, a specific
problem suitable for agriculture monitoring applications.
We concentrate on maximizing energy efficiency under
PAC concern so as to enhance network performance.

• To tackle this problem, we propose a hexagonal de-
composition scheduling algorithm to maximize energy
efficiency with a lower bound. Moreover, to reduce net-
work dimensionality and computation complexity, a grid-
based boustrophedon scheduling method is developed to



sense vacant regions and charge sensors where calculation
complexity is effectively reduced.

• To balance energy cost in charging, sensing, and moving,
we further propose a charging re-allocation mechanism
for UAVs to enhance energy efficiency by promoting
charging energy and reducing moving and sensing cost.

We conduct real experiments on a customized test-bed and
large-scale simulations to evaluate the performance of the
proposed solution. In test-bed experiments, our algorithms
have a 0.987 gap to the optimal results in energy efficiency.
In our extensive simulations, we compare our two heuristic
algorithms to traditional path scheduling methods: minimum
spanning tree (MST) [14] and nearest job next preemption
(NJNP) [15] (see Section VII). As energy efficiency maximiza-
tion is our objective under PAC problem (see Section III-B),
we study the impact of sensor numbers, minimum working
energy of sensors, and energy capacity of the UAV on energy
efficiency. Our algorithms outperform MST and NJNP at least
18.2% and 30.3%, respectively.

II. RELATED WORK

We summarize state-of-the-art research achievements for
WRSNs. As period-area coverage is a new concept, we give an
overview of related coverage problems in this research field.

A. Wireless Rechargeable Sensor Networks

In a WRSN, charging models can be classified into two
types according to different charging technologies (e.g., mag-
netic resonant coupling, electro-magnetic radiation): one-to-
one model [16], [17] and one-to-many model [18]–[21].

With the one-to-one charging model, MCs can only serve
one sensor each time; hence, spatial scheduling is essential
to prolong network lifetime. In the one-to-many case, MCs
can simultaneously provide energy replenishing service for
multiple sensors within their charging ranges; thus, a well-
designed charging position determination scheme is usually
required. Wang et al. [22] combined solar energy harvesting
with wireless charging for a hybrid wireless sensor network.
They equipped cluster heads with solar panels and powered
other nodes through mobile chargers. Moreover, mobile data
gathering approach is provided for decreasing overall costs.
Dai et al. [18] proposed a new directional charging mechanism
for mobile chargers under the one-to-many charging model.
They aimed at maximizing the overall expected charging util-
ity for sensors by determining the positions and orientations of
chargers. Coverage problems were also considered in WRSNs
[3], in which MCs are employed to achieve k-coverage for
targets while ensuring normal functionality of network.

B. Coverage Problems

Coverage problems in sensor networks are generally classi-
fied into three categories: target coverage [10], barrier cover-
age [11], [12], and area coverage [13], [23].

In target coverage, points of interests are settled first and
sensors are then deployed around to monitor events. Chen
et al. [10] proposed an energy effective movement algorithm
(EEMA) to minimize moving distance of sensors to cover
all targets. Barrier coverage problems are mainly applied for
detection of anomaly where sensing ranges of sensors form

a line shape. Kim et al. [11] studied the problem of how
to organize a hybrid network, which consists of static and
mobile sensors, to maximize the lifetime of barrier coverage
problem. By combining target coverage and barrier coverage
together, Cheng et al. [12] defined the concept of target-
barrier coverage problem which is suitable for applications
in defense surveillance. They focused on how to minimize
member numbers required to construct target-barriers in a
distributed manner while minimizing the number of required
message exchanges. Area coverage problem requires that the
union of all sensors’ sensing region can cover the whole
monitoring area. Sahoo et al. [13] concentrated on density
of nodes and proposed distributed coverage hole repairing
algorithms to accomplish area coverage.

However, most previous works are not suitable for period-
area coverage problem, in this work, we develop new schedul-
ing methods which focus on maximizing energy efficiency of
UAVs while satisfying coverage requirements.

III. PRELIMINARIES

In this section, network model, problem statement, and
problem analysis are introduced.

A. Network Model

In a WRSN, N static rechargeable sensors are deployed in a
square monitoring area A to periodically collect data. During
each period T , every sensor delivers their sensory data to the
base station (BS). When the remaining energy of a sensor falls
below a threshold, a charging request will be initiated and
delivered to BS. Upon the reception of the request, a UAV
will be employed to replenish energy for sensors. Besides,
the UAV also acts as a mobile sensor, and is responsible for
sensing vacant regions to remedy drawback of limited sensing
coverage posed by static sensors, which is defined as PAC
problem. To solve the PAC problem, we face two challenges.

Problem I (Coverage problem): Usually, the union of all
sensing range of sensors cannot cover the whole area A, vacant
regions will always exist, which may lead to data missing.
Hence, how to remedy such drawback so as to realize complete
event monitoring is challenging.

Problem II (Charging problem): Once the energy of
sensors falls below Emin (i.e., the minimum energy that can
sustain working), charging requests will be sent from sensors
to BS under an on-demand architecture [1]. How to schedule
the charging path for UAVs is another concern.

To tackle the above two challenges, a specialized UAV
is employed to accomplish coverage and charging missions.
In our work, a UAV has two functionalities: i) moving to
each vacant region (i.e., interest area that is not covered by
sensors) and sensing missing data and ii) replenishing sensors
requesting for charge. Hence, our focus is to appropriately
schedule UAV’s behavior to solve the PAC problem efficiently.

B. Problem Statement

Without loss of generality, we assume that in a given interest
area A, one UAV is able to complete sensing and charging
tasks. Whenever the scale of network grows, more UAVs
will be employed and the scheduling problem can be easily
extended from a one-UAV scenario into a multiple-UAV case.



The total energy consumed by the UAV contains sensing
energy Es, charging energy Ec, and moving energy Em. Then,
we define energy utility U of the UAV as:

U = Ec + Es + Em. (1)
Our problem is how to maximize the energy efficiency of a

UAV through scheduling while ensuring period-area coverage?
We formulate this problem as below:

max η =
1

U
∑
i∈S

Ci. (2)

Subject to:
U ≤ E, (3)

∑
i∈S

Ci = λEc, (4)

Emin ≤ Ci ≤ Emax, (5)

√
2Na

υ
+

N∑
i=1

Emax

χ
< T, (6)

A ⊆ AM ∪AS . (7)

S is denoted as a requesting set, which records all nodes
requesting for charge. We define effective energy as charged
energy for sensors:

∑
i∈S Ci, which is beneficial for the

functionality of a WRSN. Thus, our objective is to maximize
the energy efficiency η, which is calculated as Equation (2).

Equation (3) guarantees that energy utility of the UAV
is smaller than its maximum energy capacity E during one
period T . Due to the energy loss in wireless power transfer
of charging [16], we assume that only a fraction of charging
energy λEc can be received by sensors as Equation (4).
Equation (5) demonstrates the charged energy constraints for
each sensor node.

Both Equation (6) and Equation (7) describe the period-area
coverage constraints. Here,

√
2Na denotes the upper bound

of moving distance of a a× a square, and υ denotes moving
velocity of the UAV. The charging velocity of sensor i during
one period is denoted as χ. Equation (6) ensures that all
missions can be accomplished within the period T . Equation
(7) guarantees area A is fully covered by both sensors and
the UAV where AM and AS represent the area sensed by the
UAV and sensors, respectively.

C. Problem Analysis
In a WRSN with period-area coverage requirement, we

define the maximum charging energy as Emax
c and total

charged energy for sensors as λEmax
c . Then, we consider

maximizing energy efficiency in two cases:
Case I: Emax

c + Em + Es ≤ E. In this case, all charging
and sensing missions can be achieved within energy capacity
E. Then, we only focus on minimizing moving energy E∗

m

and sensing energy E∗
s to maximize energy efficiency η.

Case II: Emax
c + E∗

m + E∗
s > E. In this case, with the

minimum moving energy and sensing energy, the UAV still
cannot charge all sensors to their full capacity. Then, we try
to reduce charged energy for sensors to guarantee that E is
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Fig. 1. A diagram of hexagonal decomposition of network.

sufficient in one tour. However, when Emin
c +E∗

m +E∗
s > E

(i.e., constraint (3)) is not satisfied, a UAV is infeasible to
serve such a WRSN. In that case, we need to employ more
UAVs, which is outside the scope of this work.

In brief, to maximize energy efficiency η in Equation (2),
we have to minimize moving cost and sensing cost. Besides,
we also need to re-allocate charging energy Ec to enhance
energy efficiency in Case II.

However, it is challenging to minimize Em and Es, because
the UAV has to sense overall interest area by selecting can-
didate points, which are infinite in such a continuous area.
Therefore, how to reduce traveling and sensing cost is quite
difficult. As proved in V-A, such a problem is NP-hard, which
greatly challenges us.

IV. SCHEDULING SCHEME

In this section, we first decompose the network into
hexagons and employ a UAV with adjustable sensing range to
promote monitoring coverage. Then, a hexagon-based covering
and charging scheduling method is proposed, and a grid-based
boustrophedon algorithm is introduced to reduce scheduling
complexity for vacant regions. Finally, a charging re-allocation
mechanism is designed to further enhance energy efficiency.

A. Network Initializations

Due to NP-hardness of the problem (see proofs in Section
V-A), we try to heuristically decompose area A into hexagons,
which can seamlessly cover an area with the least number
of subregions [24]. The edge length of each hexagon is set
as the maximum sensing range of sensors. A diagram of
decomposed network is shown in Figure 1 where interest area
is decomposed into hexagons.

The advantages of hexagonal decomposition are summa-
rized as below:

a) Hexagonal decomposition can form a cellular network
which uses the least nodes to cover an area [24]. Correspond-
ingly, a UAV has the least number of sojourning positions,
which saves sensing energy Es.



Adjustable 

sensing range

A

B

C

S1

BSS2H1

H2

H3

Fig. 2. Sensing with adjustable range when the UAV is scheduling.

b) After hexagonal decomposition, the whole area is divided
into finite region pieces, such as hexagons and sensing circles
of sensors. The irregular shape of vacant regions become
regular, largely reducing the difficultly in determining the
sojourning locations for the UAV.

Then the UAV can simply schedule these pieces rather than
the whole vacant regions. To schedule a mission tour, the
spatial constraint of period-area coverage in Equation (7) can
be re-formulated as:

H∑
j=0

ξj = 0, (8)

where H denotes the number of hexagons that intersect with
area A. The sensing state of the jth hexagon is represented as
ξj which can be obtained as:

ξj =

{
0 Any piece in jth hexagon is sensed
1 Otherwise

. (9)

We employ a UAV as a mobile sensor & charger with
adjustable sensing range [25] where the maximum sensing
range is Rs. Since sensing energy is proportional to the
number of sensing positions, we can obtain the minimum
sensing energy E∗

s through hexagonal decomposition.
For easy comprehension, we give an example in Figure 2.

The interest area is composed of three connected hexagons
(i.e., H1, H2, and H3).

Firstly, after hexagonal decomposition, the UAV can stay at
point B and C (i.e., centers of H2, and H3) to respectively
sense region H2 and H3 with the maximum sensing range
Rs. As implementing with a smaller sensing radius will lead
to less sensing energy cost for the UAV [26], when monitoring
region H1, instead of configuring with Rs, the UAV will
configure circumcircle’s radius of H1 for the sake of energy
preservation. Afterwards, we focus on reducing overlapping
sensing positions to avoid a vacant region covered by multiple
times. Finally, through combining the sensing positions of
vacant regions and sensor locations, the shortest Hamiltonian
path BS → S1→ A→ B → C → BS is formed.

B. Hexagon-based Scheduling
In this part, we provide detailed scheduling algorithm based

on hexagonal network decomposition. A mission queue QM

is firstly constructed to record the sequence of missions for
the UAV. During each period T , charging missions will be
added into QM according to requesting nodes in advance, then
sensing mission for vacant regions will be scheduled.

Before scheduling, sensors satisfying the following formula
will be regarded as requesting nodes:

Ei − δi ≤ Emin, (10)
where Ei is current energy of node i, δi is the total energy
consumed by node i during T . Afterwards, requesting nodes
will be added into QM . If no vacant region exists, the shortest
Hamiltonian path will be used to guide the movement for UAV
in fulfilling charging missions.

To cover all vacant regions, the UAV will move to cir-
cumcircle of every piece (i.e., hexagons and sensor circles).
Then, centers of these circumcircles are added into QM as
sojourning locations. We form the shortest Hamiltonian path
starting and ending with BS based on QM . Moreover, as
overlaps may exist in adjacent vacant regions’ circumcircle,
when the circumcircle of the next vacant piece is influenced
by current coverage, the center of the next circumcircle will
be replaced in QM , and the mission path will be adjusted for
the remainders. We present details in Algorithm 1.

Algorithm 1 Hexagon-based Scheduling Algorithm for the
UAV (HSA)
Input: A mission queue QM , interest area A and period T
Output: A shortest path
1: Decompose interest area A hexagonally
2: for i = 1→ N do
3: if Ei − δi ≤ Emin then
4: QM ← i
5: end if
6: end for
7: for Each vacant region piece do
8: Calculate center position of its circumcircle and add it

into QM

9: end for
10: Form the shortest Hamiltonian path of QM

11: for Each position in the path do
12: if Center of the next circumcircle changes then
13: Replace next position with a new center and recom-

pute the remaining path
14: end if
15: end for
16: return A shortest path

Algorithm 1 proceeds as follows. After creating hexagonal
structures in Section IV-A, we firstly add all requesting nodes
into mission queue QM . Then, the circumcircle center of each
vacant piece is calculated and appended into QM , through
which we can form the shortest Hamiltonian path. To further
adjust the mission path, we focus on overlapping regions
among adjacent sensing positions. We replace the next position
in current path with new circumcircle center and recompute
the remaining path. Since the total serving time of the UAV is
within period T (see Equation (6)), Algorithm 1 can guarantee
a feasible solution.

After hexagon-based scheduling, we can obtain the mini-
mum moving energy E∗

m. Through combining it with sensing



Region B

Region A

Fig. 3. Vacant regions repartitioned by hexagonal decomposition.
line 1 line 1

line 2 line 2

width width

Vertex-Edge Edge-Edge

Fig. 4. A diagram of widths in Vertex-Edge and Edge-Edge parallel lines.

energy E∗
s , we can maximize energy efficiency in Case I (see

Section III-C).

C. Grid-based Scheduling
Scheduling for vacant pieces based on hexagonal decompo-

sition can reduce moving energy for the UAV, however, a large
number of pieces will increase the computational complexity.
Thus, we propose a grid-based scheduling method to deal with
such a problem.

Based on intersections of above sensing circles and
hexagons, we can obtain a series of polygonal regions instead
of previous vacant regions by merging every adjacent intersec-
tions of pieces in sensors’ sensing circle (see Figure 3). For
example, region A and region B are both polygons with larger
areas than practical vacant regions. In each single region, we
then apply a grid-based boustrophedon algorithm to schedule.
Lastly, a start point and an end point are obtained in each
region for further cross-regional scheduling.

To deal with each polygon, we utilize the characteristic of
boustrophedon method. We then intend to cover the area with
the least number of turns as UAVs’ energy consumption are
mainly spent on turning [27]. We hereby propose the concept
of width of convex polygon for minimizing the number of
turns, which is described below.

Definition 2 (Convex Polygon Width).
The width of a convex polygon is defined as the minimum

distance between a pair of parallel lines of support, which
only appears in the form of Vertex-Edge type or Edge-Edge
type (see Figure 4).

With the boustrophedon moving mechanism, turning of the
UAV can be minimized by moving in the direction perpen-

dicular to the width. Thus, we minimize the total width of a
polygon (convex or concave) as below:

min
m∑

k=1

Wk, (11)

where each subregion k is a convex polygon, m denotes the
number of subregions and Wk represents the width of the kth
subregion. Since decomposing a concave region into multiple
convex polygons with the minimum width is NP-hard [28],
we adopt a greedy method to form subregions for a complete
polygon region. Then, we put these subregions together and
calculate the shortest path from a start point to an end point
for each region. At last, regions can be represented by groups
of two linked points for easier computation.

The whole process of the grid-based boustrophedon algo-
rithm is presented in Algorithm 2.

Algorithm 2 Grid-based Boustrophedon Scheduling Algorith-
m (GBSA)
Input: Vacant regions, maximum sensing range Rs, mission

queue QM and period T
Output: A grid-based boustrophedon path
1: Add charging mission of request sensors into QM

2: Expand each vacant region into a polygon by hexagonal
decomposition results

3: for Each polygon P do
4: while P is concave do
5: Obtain the set of concave vertex SV

6: for Each i ∈ SV do
7: Form two polygons by drawing a line that passes

i and parallels to an edge
8: end for
9: Select two polygons with the minimum sum of width

and decompose them recursively
10: end while
11: Form a boustrophedon path with the maximum sensing

range Rs of each subregion (convex polygon)
12: Merge each subregion in P into the shortest path
13: Obtain a start point Pa and an end point Pb

14: Add the segment (Pa, Pb) into QM

15: end for
16: Schedule QM into the shortest Hamiltonian path within

T
17: return A new mission path

Algorithm 2 proceeds as follows. At first, polygons are
obtained by expanding vacant regions. Then, multiple convex
subregions are produced by minimizing the sum of width. Af-
terwards, a boustrophedon path is applied with the maximum
sensing range Rs (Line 3-11). Then, the shortest path with a
start point and an end point is gained by merging subregions
and each polygon can be regarded as a segment (Line 12-13).
Finally, a mission path will be returned, which is calculated
from segments and requesting sensors.

To reduce the complexity of large-scale hexagon-based
scheduling algorithm, we obtain a shortest boustrophedon path
where E∗

m is minimized after grid-based scheduling algorithm.
Therefore, the problem of maximizing energy efficiency by
minimizing moving energy and sensing energy is solved by



our two proposed algorithms.

D. Charging Re-allocation Mechanism
As mentioned in Case II (see Section III-C), when energy

capacity E of the UAV is insufficient for fully charging all
requesting sensors under optimal values of E∗

m and E∗
s (i.e.,

Emax
c +E∗

m+E∗
s > E), we will re-allocate charged energy for

sensors. Thus, we propose a charging re-allocation mechanism
to further enhance energy efficiency of the UAV.

Based on the minimum working energy Emin of sensors,
the minimum charging energy of the UAV is calculated as:

Emin
c =

1

λ

∑
i∈S

(Emin − Ei + δi). (12)

Here, we consider both current energy and energy consump-
tion of each sensor during one period T to give the lower
bound of charging energy.

To maximize energy efficiency, we should take full ad-
vantage of charging energy of the UAV. Thus, we give a
charging re-allocation mechanism to determine how much
energy should be charged for each requesting sensor.

Algorithm 3 is described as below. We first try to charge
all sensors in requesting set S by applying minimum moving
energy and sensing energy for the UAV. If energy utility U is
smaller than E, each sensor can be fully charged. However,
when the energy capacity is not sufficient for full charge,
we should compute the maximum charging energy to achieve
energy efficiency maximization. Moreover, minimum charged
energy should always be satisfied to ensure operation of
sensors (Line 5-6). To allocate charging energy for sensors,
we consider both periodic energy consumption and maximum
charged energy of requesting sensors. Sensors with a higher
energy consumption δi will be allocated more energy. How-
ever, if a sensor is allocated much energy than its capacity,
redundant energy will be re-allocated to sensors whose energy
are not full (Line 11-13). The charging re-allocation process
ends when charging energy is completely allocated.

V. CHARACTERISTIC ANALYSIS

In this section, we prove the NP-hardness of the energy
efficiency maximization problem under PAC constraints and
discuss the lower bound of hexagon-based scheduling method.

A. NP-hardness Proof
To maximize the energy efficiency in Equation (2), we focus

on minimizing the moving cost of the UAV (see Section III-C).
Specially, if area A can be fully covered by only sensors, the
UAV can simply execute path scheduling among requesting
sensors. This can be regarded as a traveling salesman problem
(TSP) [29], which is NP-hard explicitly.

When vacant regions exist, they will be added into UAV’s
tour. For ease of simplicity, we take a single region as an
example. To prove the NP-hardness, we utilize a simple
decomposed grid graph to substitute for our network.

Theorem 1. The problem of maximizing energy efficiency
of a UAV under PAC constraints is NP-hard.

Proof. We make use of the reduction from Hamiltonian
Circuit in Planar Bipartite Graphs with Maximum Degree 3
Problem [30] to hamiltonian circuit in grid graphs.

Given a planar bipartite graph G with n vertices and a
maximum degree of 3, we define a grid graph G′ with m

Algorithm 3 Charging Re-allocation Mechanism
Input: Current energy Ei, energy consumption δi, and min-

imum working energy Emin of requesting sensors, mini-
mum moving energy E∗

m and sensing energy E∗
s , request-

ing set S.
Output: Feasibility of charging re-allocated mechanism for

requesting sensors.
1: Compute Emax

c = 1
λ

∑
i∈S(Emax − Ei + δi)

and Emin
c = 1

λ

∑
i∈S(Emin − Ei + δi).

2: if Emax
c + E∗

m + E∗
s ≤ E then

3: Fully charge for each requesting sensor in S.
4: end if
5: if Emin

c + E∗
m + E∗

s > E then
6: return false
7: end if
8: Compute charging energy to be allocated Ec = E−E∗

m−
E∗

s .
9: Charge each sensor to Emin and Ec ← Ec − Emin

c

λ .
10: while Ec ̸= 0 do
11: Allocate energy δiλEc∑

i∈S δi
to each sensor i in S.

12: if There exists sensor whose charged energy exceeds
Emax then

13: Update Ec by summing redundant energy and delete
sensors with Emax energy from S.

14: end if
15: end while
16: return true

vertices where m = O(n), such that G′ has the shortest path
if and only if G has the shortest one. Then we define a region
R which is formed by placing squares (whose edge length
equals to maximum sensing range) at the vertices of G′.

Obviously, the existence of a tour with m vertices in G′ im-
plies the existence of a UAV tour of m. That means the region
R is partitioned into a non-overlapping path. Traveling through
a path corresponds to traveling through the corresponding grid
vertices. Therefore, a UAV tour with a length of m indicates
a tour with a length of at most m in the grid graph. �

B. Approximation Analysis

To analyze the characteristic of energy efficiency of UAV,
we concentrate on the sensing energy and moving energy that
caused by hexagonal decomposition networks. We consider a
unit square with edge length 1 as an interest area A, where
a coverage rate ϵ (0 < ϵ < 1) is given for sensors. Thus,
we can obtain a lower bound of hexagon-based scheduling
algorithm below.

Theorem 2. The hexagon-based scheduling algorithm max-
imizes energy efficiency with a (C1− (1− ϵ)−1C2)

1
2 approx-

imation where C1 = 2
2−

√
3NR2

s

, and C2 =
2πNR2

s

2−
√
3NR2

s

.

Proof. First, we calculate the approximate sensing area X̃
as:

X̃ = 1− πNR2
s

1− ϵ
. (13)

Here, X̃ represents the practical sensing area where overlaps
exist with coverage rate ϵ. While the optimal sensing area



is calculated by area coverage with no overlaps, which is
computed as:

X∗ = 1−
√
3NR2

s

2
. (14)

Without loss of generality, sensing energy dissipation co-
efficient is denoted as α and the approximate total energy
consumed by sensing can be represented by αX̃ . To fur-
ther deal with the moving cost, a deterministic upper bound
of the shortest path traversing |QM | nodes is derived as√
2(|QM | − 2)X̃ [3] for a square sensing field with area X̃ .
We formulate the optimal energy efficiency with only sens-

ing missions as below:

η∗ =
αX∗

αX∗ +
√
2(|QM | − 2)X∗

. (15)

Hence, we have:

η̃

η∗
=

αX̃X∗ + X̃
√

2(|QM | − 2)X∗

αX̃X∗ +X∗
√

2(|QM | − 2)X̃

=

√
2(|QM | − 2)X∗− 1

2 + α√
2(|QM | − 2)X̃− 1

2 + α

>

√
2(|QM | − 2)X∗− 1

2√
2(|QM | − 2)X̃− 1

2

=

√
X̃

X∗ .

(16)

Combine Equation (13) and Equation (14), a lower bound
of energy efficiency is obtained as:

η̃ > (C1 − (1− ϵ)−1C2)
1
2 η∗, (17)

where C1 and C2 are constants. C1 = 2
2−

√
3NR2

s

and C2 =

2πNR2
s

2−
√
3NR2

s

. �
Through analyzing the approximation ratio of hexagon-

based scheduling algorithm, we can bound the optimal energy
efficiency according to Equation (17).

VI. TEST-BED EXPERIMENTS

To demonstrate the effectiveness of the proposed schemes
and feasibility for agricultural applications, a test-bed exper-
iment imitating an agricultural monitoring application (i.e.,
monitoring crop growth) is conducted [31].

In the experiment, five camera sensors (Type OV7670)
built with Powercast by RF charging (P2110 Powerharvester
Receiver converts RF into DC power) and a UAV equipped
with a camera (Type MT9V034) and a TX91501 transmitter
(sending out RF signals on 915MHz) are deployed to collect
image data, as shown in Figure 5.

We enclose a 10m × 10m area region and deploy five
fixed camera sensors for static monitoring. Then, a UAV is
employed as a supplemental mobile camera sensor. Besides,
we construct a traveling tour for the UAV based on hexagon-
based structure (see Figure 6).

Energy 

Module

Charging & Sensing 

Module

Communication 

Module

Camera Sensor

Receiving 

Antenna

Fig. 5. A diagram of practical rechargeable sensors and a UAV.

BS

Fig. 6. A scheduling path in an interest area with grasses and shrubs.

The flying height of the UAV is determined by both charg-
ing distance and resolution requirement. Thus, we give the
maximum height of the UAV as:

hmax = max{RC ,
I

2Rdtan(
θ
2 )
}, (18)

where RC denotes the effective charging radius, and Rd

represents the required spatial resolution. Image resolution is
denoted as I and θ is the angle of view (AOV) which is defined
as the angular extent imaged by the camera.

We compare the energy efficiency of the UAV obtained
by two algorithms with the theoretical optimal results and
verify the correctness of the approximate ratio given in Section
V-B. As shown in Figure 7, we set diverse data collecting
periods 1h− 6h to observe the energy efficiency in each line.
We have ϵ = 0.1 by measuring coverage area of sensors
and calculate a 0.987 approximate ratio of hexagon-based
scheduling algorithm (HSA) in Equation (17) which is verified
by our test-bed experiments perfectly. Besides, GBSA can
reach 94.4% energy efficiency compared to the optimal value.
This is because HSA and GBSA are both based on hexagonal
decomposition where HSA has a shortest path among sensors
and vacant regions, GBSA forms a boustrophedon path to
reduce complexity.

VII. SIMULATION ANALYSIS

In this section, large-scale simulations are conducted to
evaluate the performance of the proposed schemes.

A. Simulation Setup
As listed in Table I, 50 − 100 sensors are deployed in a

100m × 100m square area. A UAV responsible for sensing
and charging missions is employed. The energy capacity of a
sensor and the UAV is 2KJ and 50 − 100KJ , respectively.
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Fig. 7. Comparison of HSA, GBSA, and optimal value of energy efficiency
in test-bed experiments.

Sensors consume 200J/h− 300J/h energy per hour for net-
work operation and the minimum working energy for sensors
is 100J − 150J . The working period of the UAV is 10 hours,
within which data collecting and energy replenishing missions
are accomplished. When traveling, its speed ranges from 3m/s
to 8m/s.

As no previous works have ever focused on serving WRSNs
with PAC constraints, we select two classic distance-based
methods as baselines: MST [14] and NJNP [15]. In MST, the
shortest line between sensors and vacant regions is primarily
selected in each iteration. In NJNP, a mission with the closest
spatial distance will be served firstly.

TABLE I
SIMULATION SETUP

Parameters Values

Network area 100m× 100m
Number of nodes 50− 100

Energy consumption rate of nodes 200J/h− 300J/h
Velocity of the UAV 3m/s− 8m/s

Energy capacity of nodes 2KJ
Energy capacity of the UAV 50KJ − 100KJ

Minimum working energy of nodes 100J − 150J
Data collecting period 10h

Scheduling scheme HSA, GBSA, MST,
NJNP

B. Performance Comparison

In this part, we first compare two proposed scheduling
algorithms under different data collecting periods. Then, we
compare our algorithms with MST and NJNP in terms of
number of sensors, minimum working energy of sensors,
energy capacity of the UAV, and moving velocity of the UAV.

1) HSA vs. GBSA: At first, energy efficiency of the UAV
and charging time for sensors are compared in Figure 8. In
Figure 8(a), energy efficiency in hexagon-based scheduling al-
gorithm is near 98% and always stays higher than that of grid-
based scheduling algorithm, which indicates that hexagon-
based scheduling algorithm matches the objective better.

With respect to charging time, it decreases gradually as time
goes. The reason is that, more requesting sensors will emerge,
leading to more moving time (see Figure 8(b)). Statistically,
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Fig. 8. Performance comparison between HSA and GBSA in energy
efficiency, and charging time.

the charging time in hexagon-based scheduling is about 60%
higher than the other, resulting from the shorter path it derives.

2) Impact of Sensor Number: We set the number of sensors
in our network from 50 to 100 as shown in Figure 10.
All algorithms have a rising trend as the number of sensors
increases and our algorithms (i.e., HSA and GBSA) have the
highest energy efficiency than others. Moreover, the efficiency
increases slowly as the number of sensors rises, and the reason
is that, more requesting sensors need more charged energy than
moving energy of the UAV, which causes a slow rise.

3) Impact of Minimum Working Energy of Sensors: As
shown in Figure 11, our algorithms outperform MST and
NJNP at least 18.2% and 30.2%, respectively. The energy
efficiency increases as Emin rises in all four lines. This is
because when the minimum working energy of sensors is high,
more sensors will be added into requesting set and the total
charged energy for sensors will increase. Hence, the energy
efficiency is promoted eventually.

4) Impact of Energy Capacity of the UAV: As shown in
Figure 12, four algorithms increase and gradually become
stable as the energy capacity of the UAV ranges from 50KJ
to 100KJ . HSA outperforms NJNP at most 26.6% when
E = 70KJ . The reason is that, HSA forms the shortest
Hamiltonian cycle based on requesting sensors and vacant
regions, which leads to the least moving energy which thus
maximizes energy efficiency. However, NJNP only selects the
nearest sensor or vacant region to serve locally, which causes
great moving cost.

5) Impact of Moving Velocity of the UAV: The moving
velocity of the UAV directly influences the value of period T
(see Equation (6)), which ensures all requesting sensors can
be charged at least Emin energy for keeping operational. As
shown in Figure 13, the minimum period in four algorithms
decreases as the moving velocity of the UAV rises from 3m/s
to 8m/s. This is because when the UAV moves fast, the
traveling time will be shortened and servicing time will be
reduced. We set the moving velocity of the UAV as 5m/s and
the minimum periods in four algorithms are smaller than 10h,
obviously.

VIII. CONCLUSIONS

In this paper, we developed a new concept of period-area
coverage problem (PAC) in WRSNs and proposed two heuris-
tical scheduling algorithms to maximize energy efficiency with
UAVs. We proved an approximate ratio of the hexagon-based
scheduling method and then introduced a grid-based boustro-
phedon method to reduce scheduling complexity by scheduling
fewer missions. Moreover, a charging re-allocation mechanism
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was designed for further promoting energy efficiency. Through
theoretical analysis, test-bed experiments, and simulations, we
demonstrated that our scheme can effectively maximize energy
efficiency and achieve a promising period-area coverage with
UAVs for WRSNs.

In the future work, we will focus on exploring real-time
scheduling methods to solve such coverage problem.
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