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SeaShips: A Large-Scale Precisely Annotated
Dataset for Ship Detection

Zhenfeng Shao, Wenjing Wu , Zhongyuan Wang , Wan Du, and Chengyuan Li

Abstract—In this paper, we introduce a new large-scale dataset
of ships, called SeaShips, which is designed for training and
evaluating ship object detection algorithms. The dataset currently
consists of 31 455 images and covers six common ship types (ore
carrier, bulk cargo carrier, general cargo ship, container ship,
fishing boat, and passenger ship). All of the images are from
about 10 080 real-world video segments, which are acquired by
the monitoring cameras in a deployed coastline video surveillance
system. They are carefully selected to mostly cover all possible
imaging variations, for example, different scales, hull parts,
illumination, viewpoints, backgrounds, and occlusions. All images
are annotated with ship-type labels and high-precision bounding
boxes. Based on the SeaShips dataset, we present the performance
of three detectors as a baseline to do the following: 1) elementarily
summarize the difficulties of the dataset for ship detection; 2)
show detection results for researchers using the dataset; and 3)
make a comparison to identify the strengths and weaknesses of
the baseline algorithms. In practice, the SeaShips dataset would
hopefully advance research and applications on ship detection.

Index Terms—Object detection, ship dataset, neural networks,
ship detection.

I. INTRODUCTION

THE detection of inshore and offshore ships is an essential
task for a large variety of applications in both military

and civilian fields. For example, in the civil field, ship detec-
tion plays a strong supervisory role in monitoring and managing

Manuscript received January 30, 2018; revised May 26, 2018 and July 13,
2018; accepted August 9, 2018. Date of publication August 17, 2018; date of
current version September 18, 2018. This work was supported in part by the
National High-Resolution Earth Observation System Major Projects of China
under Grant 02-Y30B19-9001-15/17, in part by the National Natural Science
Foundation of China under Grants 61671332, 41771452, and 41771454, in part
by the Guangzhou Science and Technology Project under Grant 201604020070,
and in part by the Key Research and Development Program of Hubei Province
of China under Grant 2016AAA018. The associate editor coordinating the
review of this manuscript and approving it for publication was Prof. Xuan Song.
(Corresponding author: Wenjing Wu.)

Z. Shao, W. Wu, and C. Li are with the State Key Laboratory for Information
Engineering in Surveying, Mapping and Remote Sensing, Wuhan University,
Wuhan 430079, China (e-mail:, shaozhenfeng@whu.edu.cn; wuwenjing94@
163.com; lichengyuan@whu.edu.cn).

Z. Wang is with the National Engineering Research Center for Multime-
dia Software, Wuhan University, Wuhan 430072, China (e-mail:, wzy_hope@
163.com).

W. Du is with the Computer Science and Engineering, University of
California, Merced, CA 95340 USA (e-mail:,wdu3@ucm.edu).

This paper has supplementary downloadable material available at http://
ieeexplore.ieee.org. The file contains five demo videos on ship detection,
through which one can see the effect of the SeaShips dataset applied to
actual situations more intuitively. The material is 42.5 MB in size.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2018.2865686

marine traffics, transportation, fisheries dumping of pollutants
and illegal smuggling. In the military field, through obtaining
ship location, size, direction, speed and other information, one
can determine whether there exists ship cross-border or other
abnormal behaviors to ensure the safety of coast and sea. Tradi-
tional ship detection in video heavily relies on the staffs’ manual
manipulation and provided that maritime staffs need to monitor
the screen, it is inefficient and costly. Besides, due to the com-
plexity of sea environment, it is very challenging for maritime
staffs to keep focusing on the screen for a long time.

Computer-aided ship detection methods greatly free up hu-
man resources and typically include two steps: extracting image
features, and then using classifiers for classification and local-
ization. Zhu [1] extracts ships based on local binary patterns,
shape features and gray intensity features. Yang [2] uses sea sur-
face feature and a linear classifier to detect ships. Shen [3] firstly
extracts ship proposals and then uses a directional gradient his-
togram feature to distinguish them. These methods can produce
stable results under calm sea conditions. However, when distur-
bances such as waves, clouds, rain, fog, and reflections happen,
the extracted low-level features are not robust. Besides, manual
selection of features is time-consuming and strongly dependent
on the expertise and characteristics of the data itself.

Therefore, later studies began to focus on how to integrate
more ship features into detection and how to detect ships more
precisely and quickly. In recent years, a lot of breakthroughs
have been made owning to the convolution neural networks
(CNN) [4]–[8]. Through a series of convolution and pooling
layers, convnets can extract more distinguishable features. How-
ever, since convent is a data-driven approach, its ship detection
performance has to rely on large-scale high-quality training
dataset. Although a variety of open datasets, e.g., ImageNet
[9], PASCAL VOC [10] and COCO [11], are available for the
identification and detection of multiple static targets, they are
designed for general object detection, but not specific for ship
detection. We will show in our experiments that the performance
of these general datasets in ship detection is unsatisfactory. In
addition, there are also many unique datasets for specific ob-
ject detection scenarios, e.g., face detection datasets (including
CAS-PEAL [12], LFW [13] and FDDB [14]), pedestrian de-
tection datasets (including Caltech-USA [15], KITTI [16] and
CityPersons [17]), street sign dataset FSNS [18], fish image
dataset LFIW [19], and bird image dataset Caltech-UCSD Birds
200 [20]. The disclosure of these large datasets greatly acceler-
ates the development of object detection areas. However, public
datasets specific for sea ship detection remain unavailable.
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TABLE I
COMPARISON WITH OTHER DATASETS

For this reason, our paper presents a new large-scale
ship dataset, named as SeaShips, which consists of 31455
1920 × 1080 images of 6 principal ship types, including ore
carrier, bulk cargo carrier, general cargo ship, container ship,
fishing boat and passenger ship. Every image in our SeaShips
dataset is precisely annotated with ship labels and bounding
boxes. We build the SeaShips dataset based on the images cap-
tured by an in-field video monitoring system deployed around
the Hengqin Island, Zhuhai city, China. In this project, 156 cam-
eras are deployed in 50 different locations around the northwest
border of the Hengqin Island, covering a total of 53 km2 of
coastal areas. We select images for our dataset from 45 cameras
which are deployed at 45 different locations around the seashore.
For each camera, we acquire videos in January, April, August
and October across Year 2017 and Year 2018, from 6:00 a.m.
to 20:00 p.m. every day. To make our dataset more diverse to
contain all possible situations, the selected images cover a set of
features, including different ship types, hull parts, scales, view-
points, illumination and different occlusion degrees in a variety
of complex environments.

We compare our SeaShips dataset against the existing general
multi-object detection datasets which have ship target images.
Table I presents their differences.

The PASCAL VOC2007 dataset [10] has 20 object classes,
among which ship class only has 791 objects and one label
‘boat’. The CIFAR-10 dataset [21] has 6000 32 × 32 images for
label ‘ship’, but each image is far too small and only contains
one target. Obviously, it is not suitable for practical applications
and occlusion studies. The Caltech-256 dataset [22] has 4 ship
categories including canoe, kayak, ketch, and speed boat, with
each image being roughly 300 × 200 pixels. However, as ob-
jects in the dataset are all placed in the middle, this tendency
means Caltech-256 is probably not an ideal candidate for object
localization but classification.

To evaluate the usage of our proposed SeaShips dataset, we
conduct experiments with three baseline detectors on SeaShips.
Based on the experiment results, we summarize the advantages,
difficulties and weaknesses of each detector and find out some
possible directions in future research. For example, we find that
YOLO v2 can achieve a proper tradeoff between accuracy and
speed in practical applications. We also perform cross-validation
experiments on SeaShips and the PASCAL VOC2007 dataset.
The results demonstrate that YOLO v2 model trained by our
SeaShips enjoys a good generalization ability on other test sets.

Research achievements based on the proposed dataset can
be applied to following practical applications: 1) improving the
detection accuracy of maritime vessel identification system to
achieve better ship positioning and finer category information.
2) assisting real-time ship tracking technology to monitor sailing

status, especially useful in transportation and fishery. 3) spurring
the development in automatic identification of unusual events
such as beaching, pulling back, turning around and abnormal
speed in the future to ensure maritime safety.

The remainder of this paper is organized as follows. The re-
lated work about ship dataset and object detection algorithms
are described in Section II. The acquisition and annotation pro-
cess of ship images is introduced in Section III. We describe
the detailed dataset design and analyze statistics of the newly
produced dataset in Section IV. Experimental results of three
baseline detection algorithms on our dataset are presented in
Section V. We conclude this paper in Section VI.

II. RELATED WORKS

This paper mainly discusses datasets and neural networks for
ship detection, and so we summarize the related works for these
two aspects.

A. Object Detection Datasets

In the past decades, many datasets have been created for
multi-objects and specific-object detection. ImageNet [9], PAS-
CAL VOC [10], and COCO [11] are famous datasets for the
identification and detection of multiple static targets. Although
these datasets also contain ship targets, the number is relatively
small and the categories are not rich, usually with only one label
ship or boat.

In specific object detection scenarios, CAS-PEAL [12]
advances face recognition technologies by providing a large-
scale face database of Mongolian. CityPersons [17] which has
large portions of occluded people not only constructs a more
challenging pedestrian detection dataset, but also proposes five
modifications to Faster R-CNN to improve pedestrian detection
performances on general Caltech dataset [15]. Caltech-UCSD
Birds 200 dataset [20] divides birds into 200 finer categories and
adds new part localization annotations, which makes multi-class
categorization and part localization possible. The disclosure
of these datasets together with others like LFW [13], FDDB
[14], KITTI [16], FSNS [18], fish dataset LFIW [19], etc. can
not only enables models trained on them to better generalize
to other test sets, but also reveals more challenges such as
occlusions, thus greatly accelerates object detection researches.

However, public datasets specific for sea ship detection re-
main unavailable. Therefore, the quest for large ship dataset has
become more urgent.

B. Object Detection Methods

In the light of deep learning paradigm, recent research has
been focused on three mainstream branches on boosting the
performance of object detection networks.

The first branch relies on improving convolutional neural net-
work itself, either adjusting the base architecture or increasing
the network depth. Initial attempt to adjust network architecture
was given by ZF network in 2014 [23]. Other representative ef-
forts attribute to Google’s Inception series [24]–[26]. Based on
the idea that deeper networks should lead to higher object detec-
tion accuracy, some studies are committed to deepen the network
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layers. The representative works in this branch include VGGNet
[27] and ResNet [28]. In addition, Inception ResNet [29] and
ResNetXt [30] combine advantages of these two branches at the
same time, resulting in better detection results.

The second branch has been focused on the optimization
of deep-learning-based object detection algorithms, includ-
ing region-based and regression-based detection algorithms.
Region-based algorithms begin with the R-CNN [31], and af-
terwards researchers have put forward a series of variants like
SPP-net [32], Fast R-CNN [33], Faster R-CNN [34], R-FCN
[35] and Mask R-CNN [36]. This kind of algorithms’ compu-
tation amount is large although the detection precision is very
high. End-to-end object detection algorithms typically cover
YOLO [37], SSD [38] and YOLO v2 [39]. They accomplish the
determination of the position and category directly by a single
network. As a result, one can quickly detect multi-targets in
an image, although at the same time sacrifices some position
accuracy.

The above two branches both require high-quality training
data as support. It is generally believed that the recent success
of object detectors is a product of the availability of more large-
scale training data. Therefore, the third branch can be attributed
to making full use of the data itself, such as the data sets de-
scribed in Section II-A.

Our work is related to many researches in designing datasets
[9]–[22], we are committed to reach a line that some particu-
lar databases such as pedestrian and face have achieved. The
difference is that we are aiming at a new domain—sea ships.

III. DATA ACQUISITION

We build the SeaShips dataset from the images captured by
the cameras of a real-deployed video monitoring system. In
the Zhuhai Hengqin New Area roundabout electronic fence
project, 156 cameras are deployed in 50 different locations
around the northwest border of the Hengqin Island, covering a
total of 53 km2 of coastal areas. At each location, three cameras
are normally installed, including one low-light high-definition
dome camera and two high-definition bolt cameras. The other
six cameras are panoramic cameras. These cameras provide
high-quality surveillance videos, from which our proposed
dataset images are extracted.

A. Video Camera System

There are four main types of images commonly used in the
detection of sea ships: optical remote sensing images [40]–[42],
radar images [43], [44], infrared images [45], [46] and visible
video images [47]. Among them, optical remote sensing images
easily suffer from weather conditions like waves and cloud,
which makes it difficult to achieve real-time monitoring in long
operation period. Radar images can cover a wide range and
penetrate occlusions, but their imaging resolution are poor, so
that the captured ship targets only take up a few pixels in the
entire image. This will bring a lot of inconveniences to object
detection and tracking. Moreover, high cost of radar systems
makes it difficult to achieve uninterrupted work within 24 hours.
Infrared images have obvious advantages mainly in the night or
under the circumstances lack of light, but they fail to provide

Fig. 1. Camera equipments used to extract ship images.

Fig. 2. Bulk cargo ships under different backgrounds.

rich color information. Visible light video images which can
realize the clear monitoring in the short distance sea area enjoy
lots of advantages, such as high resolution, rich in color and
texture information, low price, low power consumption, and all-
weather real-time operation. All these features allow it the best
data resource for ship inspection.

Therefore, our proposed dataset refers to visible image,
mainly obtained by frames within video sequences recorded
by front-end cameras. Each video clip is divided into 1 minute
long, including 1500 images. Fig. 1 shows the three video cam-
eras used in this paper. Among them, HD bolt camera can only
shoot at one direction, while it enjoys high video clarity. HD
dome cameras can not only rotate at any angles to acquire videos
from different viewpoints, but also switch focus to adapt to dif-
ferent scales. Panoramic camera is used to capture video data
in a wide range. These three types of cameras can provide rich
video data for extracting ship images.

B. Dataset Diversity

A good detection model should maintain sensitivity to in-
terclass differences while giving stable test results. Due to the
complexity of sea environments, all influencing factors need to
be considered to ensure diversity of the dataset. Although adopt-
ing proper data augmentation methods would generate some
formatting/distortions that may be present in the ship detection
problem, some real-world data, by its very nature, can be hard
to predict yet. So, real data is the first choice in sea ship detec-
tion. We will take the following steps to ensure diversity of our
dataset:

1) Background Selection: In most detection tasks especially
face recognition, the detection accuracy is rarely affected by
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Fig. 3. Example images of six ship types.

background variations due to the fact that face area is filled in a
regular rectangle, easily separated from background. But unlike
human faces, the shape of ship is very irregular, which will
lead to a lot of background information in the labeled bounding
box (see Fig. 2 for an example). Background information will
be identified as ship features and compromises final detection
accuracy.

To avoid the impact of a single background, we collect ship
data under 45 different backgrounds, five of which are shown in
Fig. 2. This can be accessed by selecting cameras deployed in
different locations.

2) Lighting Environment: Because the video cameras used
to extract ship images are placed in natural environments, the
illumination differences from different temporal periods are par-
ticularly significant. We collect images under different lighting
conditions by selecting videos at different periods.

3) Visible Proportion: As most sea ships in cameras are
moving, only part of ship hulls would appear on the screen
when entering and leaving the camera’s field of view. Actually,
they still belong to the objects that need to be detected. We thus
need to annotate both complete ship and incomplete ship hull
parts at different visible proportion.

4) Occlusion: Due to the fact that SeaShips data was col-
lected from broad sea area, we found that there are more
than one ships sailing in some images, highly occluded by
each other. It is obviously unreasonable to ignore occlusion.
So, we collect as much occlusion data as possible in or-
der that the subsequent training model can readily cope with
occlusions.

C. Annotation

Like other large datasets, we use manual annotation methods
to label our acquired images. As described below, we follow
three steps to improve annotation quality.

1) On one hand, to cover all the factors described in
Section III-B, the selected cameras should cover most
of the sea areas and provide data at different viewpoints
across the day. We thereby selected 168 videos from 45
cameras in different locations. Each video is one hour
in duration and consists of 60 clips where every clip
lasts 60 s, about 1500 frames. We took one image ev-
ery 50 frames (approximately two seconds) and finally
had 302400 original images in jpg format.

TABLE II
NUMBER OF IMAGES OF EACH SHIP CATEGORY

2) On the other hand, since many images actually do not have
ship objects, or there are few changes between images, the
redundancy is thus unavoidable. So, we discarded those
empty or repeated images to reduce the dataset to 31455
applicable images, which are named from 000001.jpg to
031455.jpg.

3) For each image in the dataset, we drew a bounding box
tightly around the ship object using labeling tool. The
generated xml file follows PASCAL VOC2007 format,
but without ‘difficult’ tag. Then, the total 31455 annotated
files named from 000001.xml to 031455.xml are divided
into two parts, training set and testing set.

All the above steps were accomplished manually. Although
this image selecting and annotating process costs a lot of time
and manpower, it is worthwhile in the sense of the obtained
high-quality dataset.

IV. DESIGN AND STATISTICS OF SEASHIPS DATASET

By collecting video data from cameras described in
Section III-A, 6 variations are investigated in order to construct
the SeaShips dataset: hull part, scale, viewpoint, illumination,
background, and occlusion.

A. Ship Classification System

Generally, objects in the image are labeled as either ship
or background. Although different ship types share some basic
elements such as deck and stern, different ship types vary greatly
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Fig. 4. Different annotated hull parts of container ship.

in shape and appearance. This intra-class differences make it
difficult to perform ship detection with exact category.

In this paper, we need to provide further fine-grained labels
for ships. According to the classification of civil ships in In-
troduction to Ship and Ocean Engineering [48] and the actual
situation of sea environment in Hengqin Island, we group all
ships in the sea into six categories, namely labels. They are ore
carrier, bulk cargo carrier, general cargo ship, container ship,
fishing boat, and passenger ship. Other types like oil tanker and
barge carrier rarely appear in the sea areas, and they also belong
to part of cargo ships. Therefore, these six types of ships roughly
cover all ship categories that appear in the monitoring system.
Fig. 3 shows some example images of each category. Images
are all adjusted to a similar size for the convenience of display.
Table II lists the number of images of each ship category in our
proposed dataset. The numbers of container ship and passenger
ship are relatively smaller than other types. We have 31455 im-
ages for now and there are about 60 images for each same ship
to cover most variations. In this way, our proposed SeaShips
dataset contains 500 different ships approximately.

B. Visible Proportion Variation

In addition to the situation where the entire ship hull is present
in the cameras, we also annotated ships that only have a part
of hulls appearing in the camera. Take container ship as an
example, Fig. 4 shows 12 annotated ship bounding boxes from
entering to leaving camera’s range. Similarly, we applied this
annotation process to all types of ship.

C. Scale Variation

By controlling HD dome cameras and panoramic cameras
described in Section III-A, we collected sample bounding boxes
of the same ship at different scales. Fig. 5 shows three scales
of bulk cargo carrier when the camera is facing the sea. Fig. 6
shows 3 scales of bulk cargo carrier when the camera is looking
side the sea. In this way, we collect images of different scales
for all the 6 defined ship categories.

The size of different ships also varies greatly. The small-
est ship is in 34 × 8 pixels and the largest one is in

Fig. 5. Three different scales when the camera is facing the sea.

1920 × 424 pixels, where the width ranges from 28 to 1920
pixels and the height ranges from 8 to 486 pixels, with the ratio
(width/height) ranges from 0.39 to 17.98. Thus, the scales are
enough to cover all sizes of ships.

D. Viewpoint Variation

In fact, adjacent cameras can capture pictures from different
viewpoints. By turning the HD dome cameras, we get pictures
of the same ship from different viewpoints. In this paper, we
mainly use three viewpoints described as looking at left, looking
at middle and looking at right. Fig. 7 shows example images of
one fishing boat at 6 different sub-viewpoints recorded by one
camera. Table III lists the number of images annotated at each
three viewpoints. We can see that abnormal viewpoints (looking
left and looking right) take up nearly one third of the entire
dataset, which makes the dataset a good resource for viewpoint
learning.

E. Illumination Variation

To acquire image data under different illumination conditions,
we collected videos from 6:00 am to 20:00 pm in January,
April, August and October. We think that these 4 months are
enough to cover all possible illumination variations caused by
either seasonal change or time change. Fig. 8 illustrates example
images of different lighting conditions. All these conditions are
considered in our proposed dataset.

F. Background Variation

The background diversity can be investigated according to the
cameras deployed on different locations. Fig. 9 shows nine cam-
era images with the position and orientation of the respective
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Fig. 6. Three different scales when the camera is looking side the sea.

Fig. 7. Six sub-viewpoints of the same fishing boat below the left viewpoint.

TABLE III
NUMBER OF IMAGES AT THREE DIFFERENT VIEWPOINTS

Fig. 8. Example images of different illuminations. Each column represents
one month: January, April, August, and October.

cameras. Fig. 10 shows the number of images under each back-
ground, where B1 to B45 correspond to individual camera in
counterclockwise order.

G. Occlusion Variation

In order to investigate which kinds of occlusions we have on
SeaShips, we group all those images in the presence of occlu-
sions together and roughly compare their occlusion degrees. We
found that more than 10% images contain occlusion in the whole
dataset (see Table II mixed type), with some of them even hav-
ing a high occlusion ratio (>0.9). This makes SeaShips a more
challenging dataset for occlusion handling. Fig. 11 illustrates
the distribution of ships at different occlusion levels.

Fig. 9. Some backgrounds in the dataset. (a) B5L means background number
five where the camera is looking at left. Similarly, (b), (c), (d), (e), (f), (g), (h),
(i) show the backgrounds associated with the respective cameras.

Fig. 10. Number of images under each background.

Fig. 11. Examples images of different occlusion degrees. The first and third
rows correspond to reasonable occlusion situations. The second row is highly
occluded by each other.



SHAO et al.: SEASHIPS: A LARGE-SCALE PRECISELY ANNOTATED DATASET FOR SHIP DETECTION 2599

Fig. 12. The flowchart of Faster R-CNN applied in ship detection.

V. BASELINE EXPERIMENTS ON THE SEASHIPS DATASET

To validate the functionalities of ship detection on the pro-
posed SeaShips and provide reference evaluation results for
researchers using the dataset, we retrain and evaluate three dif-
ferent baseline detectors on four Titan Xp. We also compare
performance of Seaships with another general object dataset.

A. Baseline Ship Detection Algorithms

The three baseline detectors are Faster R-CNN [34], YOLO
v2 [39], and SSD [38]. Faster R-CNN acts as the state-of-the-art
detector. YOLO v2 uses end-to-end training network to achieve
the purpose of real-time detection. SSD has made some progress
in achieving good accuracy and speed at the same time using a
pyramidal feature hierarchy structure.

1) Fast/Faster R-CNN: Fast R-CNN [33] solves the repeti-
tive calculation problem caused by R-CNN and SPP-net. It uses
RoI pooling, multi-task training, and mini-batch sampling to im-
prove on speed and accuracy. However, using selective search
method to extract proposals is still time-consuming.

Instead, Faster R-CNN creatively adopts a CNN to extract
proposals: Region Proposal Network (RPN). RPN module can
realize extraction of proposals through sharing characteristics
with the convolution layer. The following Fast R-CNN module
detects targets based on proposals extracted by RPN network.
This makes the object detection network much faster.

Original RPN version usually generates 9 anchors in three
different scales (8,16,32) and three different ratios (0.5,1,2) in
one location. However, ships in our dataset are all threadlike,
the ratio of width and height is rarely smaller than 1. Therefore,
in our training process, we do not use the ratio of 2 to generate
anchors. In this way, we decrease anchors in one location to 6
and thus reduce the time required for training.

Fig. 12 shows the flowchart of Faster R-CNN applied in ship
detection. Firstly, the original images are resized to an appro-
priate size. Then, through a series of convolution and pooling
layers, we get feature maps of the image. Thirdly, feature maps
are input into RPN to generate proposals. Together with feature
maps, it performs a Fast R-CNN process to decide whether a
box belongs to a defined class. Then it uses a regression step to
further adjust its position.

2) YOLO/YOLO v2: YOLO and YOLO v2 algorithms let
proposal generation, feature extraction, object classification and
localization be unified in one single neural network. They thus
turn ship detection into a regression problem to achieve end-to-
end detection. YOLO detection algorithm is much faster than
region-based methods. However, it has relatively low recall and
more localization errors.

Fig. 13. The flowchart of YOLO v2 applied in ship detection.

YOLO v2 uses a few tricks to improve localization while
maintaining classification accuracy. Detailed novel ideas to im-
prove YOLO’s performance can be found in [39]. As YOLO is
somewhat outdated, we adopt YOLO v2 as our second baseline
algorithm and its flowchart applied in ship detection is shown
in Fig. 13. Firstly, the original images are resized to an ap-
propriate size. Then, the resized image is divided into several
grids to perform a single network, with each grid predicting sev-
eral (for example, 5) anchor boxes and confidence scores. For
those boxes containing objects, the network calculates condi-
tional class probabilities. At last, conditional class probabilities
and box confidence predictions jointly give class-specific con-
fidence scores for each box.

3) SSD: Similar to anchors in Faster R-CNN, SSD gener-
ates several prior boxes of different ratios and scales on each
feature map. Learning the idea of converting detection to regres-
sion from YOLO, SSD completely eliminates proposal gener-
ation subsequent pixel or feature resampling stage and unifies
all computation in one single network. This makes fine-tuning
process much easier. Furthermore, SSD makes full use of pyra-
midal feature hierarchy structure which combines predictions
from multiple feature maps in different resolutions to naturally
handle objectives of various sizes.

However, basic parameters of prior box, including its size,
shape and ratios, cannot be obtained directly by learning, but by
manual setting. In addition, the prior box size and shape used by
each feature map in the network happen to be different, which
will lead debugging process to rely on experience heavily.

B. Evaluation Protocol

For a given test set, there are some common quantitative
indicators to evaluate a ship detection model. In this paper, we
follow the same evaluate protocol as used by PASCAL VOC
[10] which is briefly described below.

1) Intersection Over Union: Intersection over union, also
IOU, defines the overlap degree of two bounding boxes. It can
be computed as:

IOU =

∣
∣Bgt ∩Bp

∣
∣

|Bgt ∪Bp | (1)

As shown in Fig. 14, Bgt is the area of annotated ground truth
box and Bp is the area of predicted bounding box.

Selecting an overlap threshold threshold, the detector will
decide whether the box belongs to background or not according
to (2), where class 0 means background, and class i refers to our
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Fig. 14. Intersection Over Union.

category system.

class =

{

0, (if IOU < threshold)
i, (if IOU > threshold)

}

(2)

2) Average Precision: Given an IOU threshold, there are
two concepts, recall and precision. Recall is the proportion of
the correctly detected boxes number to the ground truth boxes
number. Precision means the ratio of the correctly detected boxes
number to the total detected boxes number. For each type, we can
draw a precision-recall curve according to recall and precision
values. AP is the area surrounded by the curve (3).

AP =
∫ 1

0
P (R) dR (3)

3) Mean Average Precision: Each class i corresponds to an
AP value APi , with mAP denoting their mean.

mAP =
∑n

i=1 APi

n
(4)

where n is the number of classes that need to be detected.
4) Frames Per Second: In addition to evaluating accuracy,

we would also compare the running time of each detector. FPS
symbolizes the number of frames/images that detector can detect
in one second. We would adopt this indicator to measure speed.

C. Results and Analysis

All experiments are performed on pre-trained models based
on ImageNet, and then fine-tuned for ship detection. For Faster
R-CNN, we use ZF net [23] (5 convolutional layers and 3 fully-
connected layers), VGG16 net [27] (13 convolutional layers and
3 fully-connected layers) and ResNet (ResNet18, ResNet50,
ResNet101) [28] as the base network architectures. We also
train Fast R-CNN algorithm with VGG16 for a comparison.
For SSD, we use MobileNet [49] and VGG16 net as base net-
work architecture. For YOLO v2, we adopt darknet19 and use
some usual data augmentation methods such as hue, saturation,
and exposure shifts. The training implementations, like number
of iterations and learning rate strategies, keep the same in all
experiments to ensure fair comparison.

1) Quantitative Results: We record the quantitative perfor-
mances of each detector in Table IV. Fig. 15 shows AP curves
of each ship type when we set IOU threshold to 0.5.

As it can be seen from Table IV, Fast R-CNN is worse than
others by a wide margin in terms of mAP performance. mAP
of Faster R-CNN series outperforms YOLO and SSD. On aver-
age, mAP of Faster R-CNN is 16.22% higher than YOLO and
12.58% higher than SSD.

For Faster R-CNN, detection accuracy and speed will increase
when we use ResNet18, ResNet 50 and ResNet 101 instead of
VGG16, especially ResNet 101. Considering their same experi-
mental setup, the improvements can be attributed to better base
networks.

In the situation where original images are resized to 300 ×
300 pixels, SSD with VGG16 network promotes the accuracy
by about 2% compared with MobileNet. Adjusting the images
to larger sizes like 608 × 608 and 512 × 512 pixels would lead
to improvements in mAP performance. This is especially obvi-
ous when adopting VGG16 network. Furthermore, SSD adopts
a pyramidal feature hierarchy structure to combine feature maps
of different layers, which to some extent alleviates the problem
of small targets detection. This fact justifies why SSD outper-
forms YOLO.

When training YOLO v2 without any tricks other than its
original paper, using multi-scale training (setting random =
1) increases mAP by almost 2%. This operation would ran-
domly change image size from 320 × 320 to 608 × 608 ev-
ery 10 batches. While random = 0 would fix the input size to
416 × 416, which is too small for 1920 ×1080 images in our
proposed dataset.

In the defined six ship categories, the performance of fishing
boat is worse than other types. The main reason is that fishing
boat is generally small and only occupies 70× 130 pixels within
1920 × 1080 image. After many forward convolutional layers,
features of small targets become vague. Detectors often fail to
handle such small targets which are dominant on fishing boat.
Performance of passenger ship is also not very good, mainly
because the number of passenger ships is relatively small. On
the contrary, ore carrier and container ship can achieve much
better results. It is because these two kinds of ships are mainly
used for transporting goods like ore and containers. These goods
have very distinctive features to be separated.

In terms of speed, although adopting end-to-end training
method enables SSD to achieve considerable effects as Faster
R-CNN, its detection speed improvement is not noticeable as
far as real-time performance is concerned. In contrast, YOLO
v2 is far better in detection speed than other methods, with FPS
being 91. It can meet real-time detection requirements.

2) Qualitative Results: In Fig. 16, we show some visual re-
sults of detection algorithms, where each column corresponds
to one particular situation: oblique viewpoint, very dark light,
small ship target, slight occlusion, medium occlusion and high
occlusion.

Evidently, most of the detection algorithms enjoy good re-
sults, with few cases of misdetection and missed detection. Im-
pressively, the very perfect detection performance is achieved
under unusual perspective (second column) and at night (third
column).

Even though the proposed SeaShips dataset contains many
samples of small ships, small object detection remains a
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TABLE IV
DETECTION RESULTS ON THE SEASHIPS DATASET

Fig. 15. Precision-recall curve for each detector on six ship types.

challenge. For example, the fishing boat (fourth column) only
occupies 175 × 55 pixels, so that features of small ships will
become insignificant even disappear.

Occlusion problem is another unavoidable challenge. Exper-
iments have shown that all algorithms can correctly detect mul-
tiple ships at a suitable occlusion rate. However, when two ships
are highly shaded from each other (the last column), it is difficult
for the detectors to distinguish them.

Furthermore, we validate ship detection results under practi-
cal extreme weather conditions, shown in Fig. 17. It can be seen
that fog, rain, wind and wave do not affect the detection a lot.
However, reflection and cloud shadow can create confusion and
thus disturb the detection of ships.

D. Comparison With a General Dataset

To illustrate generalization ability of the proposed SeaShips
dataset, we compare its performance with a general dataset,
PASCAL VOC2007 [10], which includes 363 images contain-
ing boat targets. We do not compare with the other two datasets

in Table I, because CIFAR-10 only contains images of 32 ×
32 pixels which is too small for real-world situations. And ob-
jects in Caltech-256 are all placed in the middle of the image,
which makes it unsuitable for object localization.

Based on the experimental results of three baseline detectors
in Section V-C, we find that YOLO v2 can achieve a proper
tradeoff between accuracy and speed in practical application.
Therefore, we use YOLO v2 as the base detection algorithm in
this comparison experiment. To validate the universality of the
datasets, we conduct three experiments: VOC2007 as training
data and SeaShips as testing data, SeaShips as training data
and VOC2007 as testing data, SeaShips as training data and
SeaShips as testing data. Although the SeaShips dataset can be
used to identify six types of ships, since the PASCAL VOC2007
dataset contains only one class of boat, we will use one category
for experiments for fair competition (i.e., six fine ships are all
defined as ‘ship’).

Table V shows the experimental results in terms of recall,
precision and AP, on conditions that the IoU threshold is set
to 0.5. It is obvious that the trained model of the original
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Fig. 16. Ship detection results (including successful and failure cases). The original images are shown in the first row. The next few rows are the experimental
results of the corresponding method in the first column.

PASCAL VOC dataset yields very poor detection results on
ships under the real sea scenarios. In constrast, the trained model
of SeaShips still results in good detection results on both test-
ing PASCAL VOC dataset and testing SeaShips dataset. This
is a good evidence that our dataset shows strong generalization
ability across dataset experiments.

E. Real-Time Video Scenario

Finally, we implement the above trained model on differ-
ent datasets in the Hengqin roundabout monitoring system for
real-time ship detection. In theory, they can be fully used as
a tracking system. Because in the monitoring system, every

camera produces a video of 25 FPS continuously, the real-time
performance needs to be satisfied.

In this test, we obtain RTSP addresses of the cameras in the
Hengqin roundabout monitoring system. Aiming at detecting
different ship types in real time, we then connect the trained
YOLO v2 models on SeaShips and PASCAL VOC2007 to these
addresses. We calculate the time to get images from RTSP and
display detections on the screen together, obtaining real-time
detection speed of 91 FPS. We also select 50 video clips (75,000
frames) and measure their misdetection rate and omission rate
(opposite to precision and recall). Table VI shows the statistics
for real-time video detection. Experimentally, our model is able
to achieve real-time detection and maintain good accuracy at
the same time.
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Fig. 17. The ship detection results under some extreme weather conditions.

TABLE V
DETECTION RESULTS ON DIFFERENT TRAINING SETS

TABLE VI
DETECTION PERFORMANCE FOR REAL-TIME VIDEO

Although YOLO v2 model trained on PASCAL VOC2007
can detect some boats, the omission rate is high (nearly 40%).
Under oblique or non-orthographic viewpoints, the model often
fails to detect any objects. And when we set the detection thresh-
old to a higher value like 0.7, the omission rate also increases
(over 50%). On the contrary, with a detection threshold of 0.7,
the omission rate of our model trained on the proposed SeaShips
does not increase, because the model has already fully learned
the unique characteristics of various ships. Considering the real-
time detection performance of two datasets, it is better to use our
proposed dataset for practical marine monitoring applications.

VI. CONCLUSION

In this paper, aiming to support further research in ship de-
tection field, we propose a new diverse ship dataset named Sea-
Ships. It contains accurate bounding box annotations for six ship
types in the PASCAL VOC format. We also described the de-
tailed design of the dataset, including its acquisition procedure,
annotation method, and different variations. SeaShips consists
of 31455 images of six ship types across 4 months, various
scales, viewpoints, backgrounds, illumination and diverse oc-
clusion conditions. Therefore, it can be used as a benchmark
dataset for ship detection. Adopting similar evaluation protocol
of PASCAL VOC, we provided experimental results of three
baseline detectors on the dataset. Through analyzing the results,

we concluded the performances of each detector and the diffi-
culties of ship detection.

Future research can be focused on the following aspects: 1)
With the help of established data sets, improve the detector to
better handle small vessels such as fishing boats; 2) Advance
novel detection algorithms for ship detection under occlusion;
3) Apply our data set to diverse learning-based detection algo-
rithms and practical maritime decision-making systems.
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