Publications

2004

Ni CW, Hsieh HJ, Chao YJ, Wang DL. Interleukin-6-induced JAK2/STAT3 signaling pathway in endothelial cells is suppressed by hemodynamic flow. Am J Physiol Cell Physiol. 2004;287:771–80.
Endothelial cells (ECs) are constantly exposed to shear stress, the action of which triggers signaling pathways and cellular responses. During inflammation, cytokines such as IL-6 increase in plasma. In this study, we examined the effects of steady flow on IL-6-induced endothelial responses. ECs exposed to IL-6 exhibited STAT3 activation via phosphorylation of Tyr705. However, when ECs were subjected to shear stress, shear force-dependent suppression of IL-6-induced STAT3 phosphorylation was observed. IL-6 treatment increased the phosphorylation of JAK2, an upstream activator of STAT3. Consistently, shear stress significantly reduced IL-6-induced JAK2 activation. Pretreatment of ECs with an inhibitor of MEK1 did not alter this suppression by shear stress, indicating that extracellular signal-regulated kinase (ERK1/2) was not involved. However, pretreatment of ECs with an endothelial nitric oxide synthase inhibitor (nitro-l-arginine methyl ester) attenuated this inhibitory effect of shear stress on STAT3 phosphorylation. Shear stress-treated ECs displayed decreased nuclear transmigration of STAT3 and reduced STAT3 binding to DNA. Intriguingly, ECs exposed to IL-6 entered the cell cycle, as evidenced by increasing G(2)/M phase, and shear stress to these ECs significantly reduced IL-6-induced cell cycle progression. STAT3-mediated IL-6-induced cell cycle was confirmed by the inhibition of the cell cycle in ECs infected with adenovirus carrying the inactive mutant of STAT3. Our study clearly shows that shear stress exerts its inhibitory regulation by suppressing the IL-6-induced JAK2/STAT3 signaling pathway and thus inhibits IL-6-induced EC proliferation. This shear force-dependent inhibition of IL-6-induced JAK2/STAT3 activation provides new insights into the vasoprotective effects of steady flow on ECs against cytokine-induced responses.

2003

Ni CW, Wang DL, Lien SC, Cheng JJ, Chao YJ, Hsieh HJ. Activation of PKC-epsilon and ERK1/2 participates in shear-induced endothelial MCP-1 expression that is repressed by nitric oxide. J Cell Physiol. 2003;195:428–34.
Vascular endothelial cells (ECs) continuously experience hemodynamic shear stress generated from blood flow. Previous studies have demonstrated that shear stress modulates monocyte chemotactic protein-1 (MCP-1) expression in ECs. This study explored the roles of protein kinase C (PKC), extracellular signal-regulated protein kinase (ERK1/2), and nitric oxide (NO) in sheared-induced MCP-1 expression in ECs. The activation of PKC-alpha and PKC-epsilon isoforms was observed in ECs exposed to shear stress. The use of an inhibitor (calphostin C) to PKC-alpha and PKC-epsilon decreased ERK1/2 activation and MCP-1 induction by shear, whereas an inhibitor (Go6976) to PKC-alpha did not affect ERK1/2 activation or MCP-1 induction. Inhibition of ERK1/2 activation by PD98059 blocked MCP-1 induction. Transfection of ECs with an antisense to PKC-epsilon abolished the shear inducibility of MCP-1 promoter. These results demonstrate that PKC-epsilon and ERK1/2 participate in shear-induced MCP-1 expression. We also examined the regulatory role of NO in MCP-1 expression. An NO donor (NOC18) suppressed shear-induced activation of PKC-epsilon and ERK1/2, and also repressed MCP-1 induction. Consistently, overexpression of endothelial nitric oxide synthase (eNOS) to enhance the endogenous generation of NO in ECs decreased the activation of PKC-epsilon and ERK1/2, and also inhibited MCP-1 expression. Taken together, these findings suggest that PKC-epsilon and ERK1/2 are critical in the signaling pathway(s) leading to the MCP-1 expression induced by shear stress. Additionally, this study indicates that NO, by repressing PKC-epsilon activity and ERK pathway activation, attenuates shear-induced MCP-1 expression.
Ni CW, Hsieh HJ, Chao YJ, Wang DL. Shear flow attenuates serum-induced STAT3 activation in endothelial cells. J Biol Chem. 2003;278:19702–8.
Vascular endothelial cells (ECs) are constantly exposed to flow-induced shear stress. Shear stress is known to induce signaling cascades, including the extracellular signal-regulated protein kinase (ERK) pathway. STAT3 transcription factor plays a key role in cytokine stimulation. Recent studies indicate that STAT3 is involved in growth factor-induced cell cycle. In the present study, we have examined STAT3 activation of ECs under conditions of shear flow. Bovine aortic ECs cultured with serum at static state show a serum concentration-dependent phosphorylation at Tyr-705 of STAT3, whereas there is a constant basal phosphorylation at Ser-727. In ECs subjected to shear flow, a shear dose-dependent phosphorylation of Ser-727 and ERK1/2 was observed. In contrast, a concomitantly shear dose-dependent inhibition of phosphorylation at Tyr-705 was exhibited. Shear stress on ECs increased the association of ERK1/2 to STAT3. ECs treated with MEK inhibitor (U0126 or PD98059) consistently and significantly reduced the shear-induced ERK1/2 and Ser-727 phosphorylation, indicating that ERK1/2 is upstream of Ser-727 phosphorylation. Interestingly, shear-induced inhibition in Tyr-705 phosphorylation was abolished in these same inhibitor-treated ECs. Similarly, ECs transfected with a dominant positive mutant of MEK1 enhanced the phosphorylation of Ser-727 with the attenuation of the Tyr-705 phosphorylation. In contrast, when ECs were transfected with dominant positive mutant of MEKK1, JNK upstream, no change in the phosphorylation of Ser-727 and Tyr-705 was observed. These results indicate that shear flow induces the phosphorylation of Ser-727 via ERK1/2 pathway, and this Ser-727 phosphorylation inhibits Tyr-705 phosphorylation in STAT3. As a result, shear flow reduced the translocation of STAT3 into nucleus. This study shows for the first time that shear flow may play a significant role by attenuating STAT3 activation and thus may reduce inflammatory responses and/or serum-induced endothelial proliferation.