Soft Matter and Biological Physics

Theory and Computation

Our group explores the basic physics underlying complex phenomena in ordered soft materials, biological matter, and living systems. We use theoretical approaches combining statistical physics, elasticity theory, and material geometry and topology, alongside computational approaches such as mesoscale relaxational methods, coarse-grained Brownian dynamics, and stochastic front propagation simulations. Spatial self-organization, complex geometries, and topological defects are recurring themes in our research.  Much of our work is in close collaboration with experimentalists from Physics, Materials Science, and Chemical Engineering backgrounds.

Our current research is in the areas of:

  • Active matter with liquid crystalline order
    How do emergent collective motions depend on material geometry, topology, and non-equilibrium force generation?
  • Self-assembly in ordered soft materials
    How do material order, interfacial effects, and chirality determine spontaneous spatial patterning and structure formation in liquid crystals and soft solids?
  • Biological population genetics
    What can statistical physics teach us about a population’s changing spatial structure and its evolutionary consequences?

Learn more about our research

If you’re interested in potential research opportunities, please get in touch!

Link to info on the open-Qmin project