Publications

2014

Garrett K, Vazquez XS, Egri SB, Wilmer J, Johnson LE, Robinson BH, Isborn CM. Optimum Exchange for Calculation of Excitation Energies and Hyperpolarizabilities of Organic Electro-optic Chromophores. Journal of Chemical Theory and Computation. 2014;10(9):3821–3831. doi:10.1021/ct500528z
Organic electro-optic (OEO) materials integrated into silicon–organic hybrid devices afford significant improvements in size, weight, power, and bandwidth performance of integrated electronic/photonic systems critical for current and next generation telecommunication, computer, sensor, transportation, and defense technologies. Improvement in molecular first hyperpolarizability (β), and in turn electro-optic activity, is crucial to optimizing device performance. Common hybrid density functional theory (DFT) methods, while attractive due to their computational scaling, often perform poorly for optical properties in systems with substantial intramolecular charge-transfer character, such as OEO chromophores. This study evaluates the utility of the long-range corrected (LC) DFT methods for computation of the molecular second-order nonlinear optical response. We compare calculated results for a 14-molecule benchmark set of OEO chromophores with the corresponding experimentally measured β and one-photon absorption energy, λmax. We analyze the distance dependence of the fraction of exact exchange in LC-DFT methods for accurately computing these properties for OEO chromophores. We also examine systematic tuning of the range-separation parameter to enforce Koopmans’/ionization potential theorem. This tuning method improves prediction of excitation energies but is not reliable for predicting the hyperpolarizabilities of larger chromophores since the tuning parameter value can be too small, leading to instabilities in the computation of βHRS. Additionally, we find that the size dependence of the optimal tuning parameter for the ionization potential has the opposite size dependence of optimal tuning parameter for best agreement with the experimental λmax, suggesting the tuning for the ionization potential is unreliable for extended conjugated systems.

2013

Isborn CM, Tang C, Martini A, Johnson ER, Otero-De-La-Roza A, Tung VC. Carbon nanotube chirality determines efficiency of electron transfer to fullerene in all-carbon photovoltaics. Journal of Physical Chemistry Letters. 2013;4:2914–2918. doi:10.1021/jz401369s
Nanocarbon-based photovoltaics offer a promising new architecture for the next generation of solar cells. We demonstrate that a key factor determining the efficiency of single-walled carbon nanotube (SWCNT)/fullerene devices is the chirality of the SWCNT. This is shown via current density vs voltage measurements of nanocarbon devices prepared with (9,7), (7,6) and (6,5) SWCNTs, as well as density-functional theory (DFT) density of states calculations of C60 adsorbed onto the corresponding SWCNTs. The trends in efficiency are rationalized in terms of the relative energies of the fullerene and SWCNT conduction band energy levels.
Isborn CM, Mar BD, Curchod BFE, Tavernelli I, inez TJM \. The charge transfer problem in density functional theory calculations of aqueously solvated molecules. The Journal of Physical Chemistry B. 2013;117:12189–201. doi:10.1021/jp4058274
Recent advances in algorithms and computational hardware have enabled the calculation of excited states with time-dependent density functional theory (TDDFT) for large systems of O(1000) atoms. Unfortunately, the aqueous charge transfer problem in TDDFT (whereby many spuriously low-lying charge transfer excited states are predicted) seems to become more severe as the system size is increased. In this work, we concentrate on the common case where a chromophore is embedded in aqueous solvent. We examine the role of exchange-correlation functionals, basis set effects, ground state geometries, and the treatment of the external environment in order to assess the root cause of this problem. We conclude that the problem rests largely on water molecules at the boundary of a finite cluster model, i.e., "edge waters." We also demonstrate how the TDDFT problem can be related directly to ground state problems. These findings demand caution in the commonly employed strategy that rests on "snapshot" cutout geometries taken from ground state dynamics with molecular mechanics. We also find that the problem is largely ameliorated when the range-separated hybrid functional LC-$ømega$PBEh is used.

2012

Isborn CM, Götz AW, Clark M a., Walker RC, Martinez TJ. Electronic absorption spectra from MM and ab initio QM/MM molecular dynamics: Environmental effects on the absorption spectrum of photoactive yellow protein. Journal of Chemical Theory and Computation. 2012;8:5092–5106. doi:10.1021/ct3006826
We describe a new interface of the GPU parallelized TeraChem electronic structure package and the Amber molecular dynamics package for quantum mechanical (QM) and mixed QM and molecular mechanical (MM) molecular dynamics simulations. This QM/MM interface is used for computation of the absorption spectra of the photoactive yellow protein (PYP) chromophore in vacuum, aqueous solution, and protein environments. The computed excitation energies of PYP require a very large QM region (hundreds of atoms) covalently bonded to the chromophore in order to achieve agreement with calculations that treat the entire protein quantum mechanically. We also show that 40 or more surrounding water molecules must be included in the QM region in order to obtain converged excitation energies of the solvated PYP chromophore. These results indicate that large QM regions (with hundreds of atoms) are a necessity in QM/MM calculations.

2011

Ding F, Liang W, Chapman CT, Isborn CM, Li X. On the gauge invariance of nonperturbative electronic dynamics using the time-dependent Hartree-Fock and time-dependent Kohn-Sham. Journal of Chemical Physics. 2011;135(2011):164101. doi:10.1063/1.3655675
Nonperturbative electronic dynamics using the time-dependent Hartree-Fock (TDHF) and time-dependent Kohn-Sham (TDKS) theories with the adiabatic approximation is a powerful tool in obtaining insights into the interaction between a many-electron system and an external electromagnetic field. In practical applications of TDHF/TDKS using a truncated basis set, the electronic dynamics and molecular properties become gauge-dependent. Numerical simulations are carried out in the length gauge and velocity gauge to verify the extent of gauge-dependence using incomplete basis sets. Electronic dynamics of two many-electron systems, a helium atom and a carbon monoxide molecule in high-intensity linearly polarized radiation fields are performed using the TDHF and TDKS with two selected adiabatic exchange-correlation (xc) functionals. The time evolution of the expectation values of the dipole moment and harmonic spectra are calculated in the two gauges, and the basis set dependence on the gauge-invariance of these properties is investigated.
Isborn CM, Luehr N, Ufimtsev IS, Martinez TJ. Excited-state electronic structure with configuration interaction singles and Tamm-Dancoff time-dependent density functional theory on graphical processing units. Journal of Chemical Theory and Computation. 2011;7:1814–1823. doi:10.1021/ct200030k
Excited-state calculations are implemented in a development version of the GPU-based TeraChem software package using the configuration interaction singles (CIS) and adiabatic linear response Tamm–Dancoff time-dependent density functional theory (TDA-TDDFT) methods. The speedup of the CIS and TDDFT methods using GPU-based electron repulsion integrals and density functional quadrature integration allows full ab initio excited-state calculations on molecules of unprecedented size. CIS/6-31G and TD-BLYP/6-31G benchmark timings are presented for a range of systems, including four generations of oligothiophene dendrimers, photoactive yellow protein (PYP), and the PYP chromophore solvated with 900 quantum mechanical water molecules. The effects of double and single precision integration are discussed, and mixed precision GPU integration is shown to give extremely good numerical accuracy for both CIS and TDDFT excitation energies (excitation energies within 0.0005 eV of extended double precision CPU results).

2010

Bing Y, Selassie D, Paradise RH, Isborn C, Kramer N, Sadilek M, Kaminsky W, Kahr B. Circular dichroism tensor of a triarylmethyl propeller in sodium chlorate crystals. Journal of the American Chemical Society. 2010;132(21):7454–7465.
In 1919, Perucca reported anomalous optical rotatory dispersion from chiral NaClO(3) crystals that were colored by having been grown from a solution containing an equilibrium racemic mixture of a triarylmethane dye (Perucca, E. Nuovo Cimento 1919, 18, 112-154). Perucca’s chiroptical observations are apparently consistent with a resolution of the propeller-shaped dye molecules by NaClO(3) crystals. This implies that Perucca achieved the first enantioselective adsorption of a racemic mixture on an inorganic crystal, providing evidence of the resolution of a triarylmethyl propeller compound lacking bulky ortho substituents. Following the earlier report, NaClO(3) crystals dyed with aniline blue are described herein. The rich linear optical properties of (001), (110), and (111) sections of these mixed crystals are described via their absorbance spectra in polarized light as well as images related to linear dichroism, linear birefringence, circular dichroism, and anomalous circular extinction. The linear dichroism fixes the transition electric dipole moments in the aromatic plane with respect to the growth faces of the NaClO(3) cubes. Likewise, circular dichroism measurements of four orientations of aniline blue in NaClO(3) fix a bisignate tensor with respect to the crystal growth faces. Electronic transition moments and circular dichroism tensors were computed ab initio for aniline blue. These calculations, in conjunction with the crystal-optical properties, establish a consistent mixed-crystal model. The nature of the circular extinction depends upon the crystallographic direction along which the crystals are examined. Along 100, the crystals evidence circular dichroism. Along 110, the crystals evidence mainly anomalous circular extinction. These two properties, while measured by the differential transmission of left and right circularly polarized light, are easily distinguished in their transformation properties with respect to reorientations of the sample plates. Circular dichroism is symmetric with respect to the wave vector, whereas anomalous circular extinction is antisymmetric. Analysis of Perucca’s raw data reveals that he was observing a convolution of linear and circular optical properties. The relatively large circular dichroism should in principle establish the absolute configuration of the propeller-shaped molecules associated with d- or l-NaClO(3) crystals. However, this determination was not as straightforward as it appeared at the outset. In the solid state, unlike in solution, a strong chiroptical response is not in and of itself evidence of enantiomeric resolution. It is shown how it is possible to have a poor resolution-even an equal population of P and M propellers-within a given chiral NaClO(3) crystal and still have a large circular dichroism.
Liang W, Isborn CM, Lindsay A, Li X, Smith SM, Levis RJ. Time-dependent density functional theory calculations of ehrenfest dynamics of laser controlled dissociation of NO+: Pulse length and sequential multiple single-photon processes. Journal of Physical Chemistry A. 2010;114(2):6201–6206. doi:10.1021/jp102013b
Intense laser field controlled dissociation reactions of the nitric oxide cation (NO(+)) are studied by ab initio Ehrenfest dynamics with time-dependent density functional theory. Intense electric fields with five different pulse lengths are compared, combined with potential energy surface and density of state analysis, to reveal the effect of pulse length on the control mechanism. Controllable dissociative charge states are observed, and the correlation between the laser pulse length and the probability of sequential multiple single-photon processes is presented. This work introduces a concept of using laser pulse length to control the sequential multiple single-photon process.
Fischer SA, Madrid AB, Isborn CM, Prezhdo OV. Multiple exciton generation in small Si clusters: A high-level, ab initio study. Journal of Physical Chemistry Letters. 2010;1:232–237. doi:10.1021/jz900097e
The electron hole excitonic nature of high energy states is investigated in neutral and charged Si clusters, motivated by the multiple exciton generation (MEG) process that is highly debated in photovoltaic literature, Silicon forms the basis for-much of the photovoltaic industry, and our high-level, first principles calculations show that at 2-3 times the lowest excitation energy, the majority of optically excited states in neutral Si, and Si 10 take on multiple exciton (ME) character. The transition from single excitons (SEs) to MEs is not as sharp in Si as in PbSe clusters, but it is much more pronounced than in CdSe. The closer similarity of Si to PbSe than CdSe is unexpected, since Si clusters are less symmetric than PbSe clusters. Charging suppresses MEG in Si clusters; however, the suppression is less pronounced than in PbSe. A strong ME signal is seen already at 5 X E(g) upon charging. The low ME thresholds and nearly complete switch from SEs to MEs create a good possibility for efficient MEG in neutral Si nanoclusters and reveal hope that reasonable quantum yields can still be obtained despite charging.