Han B, Isborn CM, Shi L. Incorporating Polarization and Charge Transfer into a Point-Charge Model for Water Using Machine Learning. The Journal of Physical Chemistry Letters. 2023;14(16):3869–3877. doi:10.1021/acs.jpclett.3c00036
Publications
2023
2022
Cheng C-Y, Krainova N, Brigeman AN, Khanna A, Shedge S, Isborn C, Yuen-Zhou J, Giebink NC. Molecular polariton electroabsorption. Nature Communications. 2022;13(1):7937. doi:10.1038/s41467-022-35589-4
We investigate electroabsorption (EA) in organic semiconductor microcavities to understand whether strong light-matter coupling non-trivially alters their nonlinear optical [\$\$\\chi \ˆ\(3)\łeft(ømega,\\\\\mathrm\0,0\\\\\\right)\$\$] response. Focusing on strongly-absorbing squaraine (SQ) molecules dispersed in a wide-gap host matrix, we find that classical transfer matrix modeling accurately captures the EA response of low concentration SQ microcavities with a vacuum Rabi splitting of \$\$\hslash Ømega \approx 200\$\$meV, but fails for high concentration cavities with \$\$\hslash Ømega \approx 420\$\$meV. Rather than new physics in the ultrastrong coupling regime, however, we attribute the discrepancy at high SQ concentration to a nearly dark H-aggregate state below the SQ exciton transition, which goes undetected in the optical constant dispersion on which the transfer matrix model is based, but nonetheless interacts with and enhances the EA response of the lower polariton mode. These results indicate that strong coupling can be used to manipulate EA (and presumably other optical nonlinearities) from organic microcavities by controlling the energy of polariton modes relative to other states in the system, but it does not alter the intrinsic optical nonlinearity of the organic semiconductor inside the cavity.
Bhat HS, Collins K, Gupta P, Isborn CM. Dynamic Learning of Correlation Potentials for a Time-Dependent Kohn-Sham System. In: Firoozi R, Mehr N, Yel E, Antonova R, Bohg J, Schwager M, Kochenderfer M, Firoozi R, Mehr N, Yel E, et al., editors. Proceedings of The 4th Annual Learning for Dynamics and Control Conference. Vols. 168. PMLR; 2022. pp. 546–558.
We develop methods to learn the correlation potential for a time-dependent Kohn-Sham (TDKS) system in one spatial dimension. We start from a low-dimensional two-electron system for which we can numerically solve the time-dependent Schrodinger equation; this yields electron densities suitable for training models of the correlation potential. We frame the learning problem as one of optimizing a least-squares objective subject to the constraint that the dynamics obey the TDKS equation. Applying adjoints, we develop efficient methods to compute gradients and thereby learn models of the correlation potential. Our results show that it is possible to learn values of the correlation potential such that the resulting electron densities match ground truth densities. We also show how to learn correlation potential functionals with memory, demonstrating one such model that yields reasonable results for trajectories outside the training set.
Taka AA, Lu S-Y, Gowland D, Zuehlsdorff TJ, Corzo HH, Pribram-Jones A, Shi L, Hratchian HP, Isborn CM. Comparison of Linear Response Theory, Projected Initial Maximum Overlap Method, and Molecular Dynamics-Based Vibronic Spectra: The Case of Methylene Blue. Journal of Chemical Theory and Computation. 2022;18(5):3039–3051. doi:10.1021/acs.jctc.1c01127
Gupta P, Bhat HS, Ranka K, Isborn CM. Statistical learning for predicting density–matrix-based electron dynamics. Stat. 2022;11(1):e439. doi:https://doi.org/10.1002/sta4.439
2021
Shedge SV, Zuehlsdorff TJ, Khanna A, Conley S, Isborn CM. Explicit environmental and vibronic effects in simulations of linear and nonlinear optical spectroscopy. The Journal of Chemical Physics. 2021;154(8):084116. doi:10.1063/5.0038196
Seritan S, Bannwarth C, Fales BS, Hohenstein EG, Isborn CM, Kokkila-Schumacher SIL, Li X, Liu F, Luehr N, Snyder JW Jr., et al. TeraChem: A graphical processing unit-accelerated electronic structure package for large-scale ab initio molecular dynamics. WIREs Computational Molecular Science. 2021;11(2):e1494. doi:https://doi.org/10.1002/wcms.1494
Abstract TeraChem was born in 2008 with the goal of providing fast on-the-fly electronic structure calculations to facilitate ab initio molecular dynamics studies of large biochemical systems such as photoswitchable proteins and multichromophoric antenna complexes. Originally developed for videogaming applications, graphics processing units (GPUs) offered a low-cost parallel computer architecture that became more accessible for general-purpose GPU computing with the release of CUDA in 2007. The evaluation of the electron repulsion integrals (ERIs) is a major bottleneck in electronic structure codes and provides an attractive target for acceleration on GPUs. Thus, highly efficient routines for evaluation of and contractions between the ERIs and density matrices were implemented in TeraChem. Electronic structure methods were developed and implemented to leverage these integral contraction routines, resulting in the first quantum chemistry package designed from the ground up for GPUs. This GPU acceleration makes TeraChem capable of performing large-scale ground and excited state calculations in the gas and condensed phase. Today, TeraChem’s speed forms the basis for a suite of quantum chemistry applications, including optimization and dynamics of proteins, automated and interactive chemical discovery tools, and large-scale nonadiabatic dynamics simulations. This article is categorized under: Electronic Structure Theory > Ab Initio Electronic Structure Methods Software > Quantum Chemistry Structure and Mechanism > Computational Biochemistry and Biophysics
Dunnett AJ, Gowland D, Isborn CM, Chin AW, Zuehlsdorff TJ. Influence of non-adiabatic effects on linear absorption spectra in the condensed phase: Methylene blue. The Journal of Chemical Physics. 2021;155(14):144112. doi:10.1063/5.0062950
Zuehlsdorff TJ, Shedge SV, Lu S-Y, Hong H, Aguirre VP, Shi L, Isborn CM. Vibronic and Environmental Effects in Simulations of Optical Spectroscopy. Annual Review of Physical Chemistry. 2021;72(1):165–188. doi:10.1146/annurev-physchem-090419-051350
Including both environmental and vibronic effects is important for accurate simulation of optical spectra, but combining these effects remains computationally challenging. We outline two approaches that consider both the explicit atomistic environment and the vibronic transitions. Both phenomena are responsible for spectral shapes in linear spectroscopy and the electronic evolution measured in nonlinear spectroscopy. The first approach utilizes snapshots of chromophore-environment configurations for which chromophore normal modes are determined. We outline various approximations for this static approach that assumes harmonic potentials and ignores dynamic system-environment coupling. The second approach obtains excitation energies for a series of time-correlated snapshots. This dynamic approach relies on the accurate truncation of the cumulant expansion but treats the dynamics of the chromophore and the environment on equal footing. Both approaches show significant potential for making strides toward more accurate optical spectroscopy simulations of complex condensed phase systems.
Lu S-Y, Zuehlsdorff TJ, Hong H, Aguirre VP, Isborn CM, Shi L. The Influence of Electronic Polarization on Nonlinear Optical Spectroscopy. The Journal of Physical Chemistry B. 2021;125(44):12214–12227. doi:10.1021/acs.jpcb.1c05914